Approximate XML structure validation based on document-grammar tree similarity

http://www.producao.usp.br/handle/BDPI/50309

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Approximate XML structure validation based on document–grammar tree similarity

Joe Tekli a, Richard Chbeir b,*, Agma J.M. Traina c, Caetano Traina Jr. c, Renato Fileto d

a Dept. of Elec. and Compt. Eng., SOE, Lebanese American University (LAU), 36 Byblos, Lebanon
b LIUPPA Laboratory, University of Pau and Adour Countries (UPPA), 64200 Anglet, France
c ICMC, University of Sao Paulo (USP), 13566-590 São Carlos, SP, Brazil
d Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil

ABSTRACT

Comparing XML documents with XML grammars, also known as XML document and grammar validation, is useful in various applications such as: XML document classification, document transformation, grammar evolution, XML retrieval, and the selective dissemination of information. While exact (Boolean) XML validation has been extensively investigated in the literature, the more general problem of approximate (similarity-based) XML validation, i.e., document–grammar similarity evaluation, has not yet received strong attention. In this paper, we propose an original method for measuring the structural similarity between an XML document and an XML grammar (DTD or XSD), considering their most common operators that designate constraints on the existence, repeatability and alternativeness of XML elements/attributes (e.g., \texttt{?}, \texttt{+}, \texttt{MinOccurs}, \texttt{MaxOccurs}, etc.). Our approach exploits the concept of tree edit distance, introducing a novel edit distance recurrence and dedicated algorithms to effectively compare XML documents and grammar structures, modeled as ordered labeled trees. Our method also inherently performs exact validation by imposing a maximum similarity threshold (minimum edit distance) on the returned results. We implemented a prototype and conducted several experiments on large sets of real and synthetic XML documents and grammars. Results underline our approach's effectiveness in classifying similar documents with respect to predefined grammars, accurately detecting document and/or grammar modifications, and performing document and grammar relevance ranking. Time and space analysis were also conducted.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The structural and self-describing nature of XML promotes a number of emerging techniques ranging from XML version control, intelligent Web search, and data integration, to message translation and clustering/classification, requiring, in one way or another, some notion of XML structural similarity. In XML similarity-related research, most work has focused on estimating similarity at the XML data layer (comparing XML documents, e.g., [26,33,48]), while quite a few studies have targeted the XML type layer (comparing XML grammars, e.g., [5,28,61]). Nonetheless, few efforts have been dedicated to similarity evaluation in-between the XML data and type (document/grammar) layers.
Traditionally, most studies related to XML document/grammar comparison have targeted XML validation [7,8,49], i.e., a specific case of Boolean XML comparison, designed to verify whether an XML document is valid (or not) with respect to (w.r.t.) a given XML grammar (DTD [16] or XSD [31]). Yet with the proliferation of heterogeneous XML data on the Web (i.e., documents originating from different data-sources and not conforming to the same grammar, or documents lacking predefined grammars), there is an increasing need to perform ranked XML document/grammar comparison, which we refer to as ‘approximate XML validation’: identifying those documents which are not necessarily valid w.r.t. the user grammar, but which share a certain amount of similarity with the grammar, ranked following their similarity scores.

Evaluating the similarity between heterogeneous documents and grammars can be exploited in various application scenarios requiring accurate and ranked detection of XML structural similarities [10,62], ranging over: XML document classification against a set of grammars declared in an XML database [10,80], (just as DB schemas are necessary in traditional DBMS for the provision of efficient storage, retrieval and indexing facilities, the same is true for DTDs and/or XSDs in XML repositories), XML ranked document retrieval via structural queries [32,55] (a structural query being represented as a DTD/XSD against which the incoming XML data stream is matched), as well as Web service matching and SOAP processing (searching and ranking services which best match WSDL service requests, and comparing outgoing SOAP messages to sender-side WSDLs, processing only those parts of the messages which differ from the WSDL descriptions in order to avoid unnecessary overhead, and thus reduce processing cost in SOAP parsing [74], serialization [2], and communications [72,78]).

In this study, we focus on the problem of evaluating the structural similarity between an XML document and an XML grammar, i.e., comparing the structural arrangement and ordering of XML elements/attributes in the XML document and the XML grammar. Different from previous approaches which are either generic (disregarding XML grammar constraints, e.g., the Or operator, ?, +, etc.) [32,50,75], developed for the DTD language and do not consider more complex and expressive XSD-based constraints (e.g., MinOccurs and MaxOccurs) [9,10], or restricted to Boolean results (i.e., traditional XML validation methods [7,8,49]), we aim at providing a method which is:

- Fine-grained in detecting and identifying the structural similarities and disparities between XML documents and grammars, in comparison with current generic [32,75] and alternative [9,10] approaches.
- Considering the more expressive XSD grammar constraints (namely MinOccurs and MaxOccurs), in comparison with less expressive DTD-based constraints (e.g., ?, *, +) handled in existing methods [9,10].
- Producing a ranked similarity result, in comparison with existing Boolean (validation) methods, e.g., [7,8,49].

To achieve these goals, we provide a new approach that extends well-known dynamic programming techniques for finding the edit distance between tree structures, XML documents and grammars being modeled as Rooted Ordered Labeled Trees. Our approach consists of two main phases: (i) XML document/grammar tree representation and (ii) XML document/grammar tree comparison (cf. overall architecture in Fig. 1). While XML documents can be naturally represented as labeled trees, XML grammars are usually more intricate, due to the various types of constraints on the existence, repeatability and alternativeness of XML nodes (e.g., ?, + operators in DTDs, MinOccurs, MaxOccurs cardinality operators in XSD, as well as the And sequence operator and Or alternativeness operator). These would have to be considered to obtain an accurate similarity measure. Hence, we address the problem of comparing an XML document with an XML grammar as that of: producing a tree representation for the XML grammar (comparable to the XML document tree representation) with additional components to describe cardinality constraints (namely the MinOccurs and MaxOccurs operators), and then applying a tree-to-tree edit distance function to compute document-to-grammar structural similarity, taking into account XML grammar constraints. We introduce dedicated grammar transformation rules to simplify grammar expressions (while preserving their

Fig. 1. Simplified activity diagram describing our XML document/grammar comparison framework.

1 Web Service Description Language (WSDL) is a special XML grammar structure that supports the machine-readable description of a Web service's interface and the operation it supports, including corresponding SOAP message formats.
expressiveness) representing each grammar as a single tree or a set of trees following its Disjunctive Normal Form (i.e., a set of grammars free of the Or operator, e.g., declaration \(a/(b, c) \) is split into two declarations: \(a \) and \(b, c \), each being represented as a separate tree). Then, we introduce a Tree (Edit Distance) Comparison approach to compute (concurrently, using multithread processing), the cost of transforming the XML document tree so that it becomes valid w.r.t. the (set of) XML grammar tree(s). Minimum Tree edit Operations Costs computed via TOC module, are fed to a Tree Edit Distance (TED) algorithm, which identifies the minimum distance (maximum similarity) value. We build on TED as an effective and efficient means to compare semi-structured data, e.g., XML documents [18, 26, 48], which has been proven optimal in structural similarity evaluation, w.r.t. less accurate methods [17]. Also, note that our XML grammar tree model considers complex declarations, including: (i) repeatable sequence expressions, (ii) repeatable alternative expressions, and (iii) recursive expressions, which have been disregarded in most existing studies, e.g., [9, 32, 57]. In addition, our grammar tree model is not limited to context-free (DTD-like) grammar declarations: where the definition of an element is unique and independent of its position in the grammar; but can be used with context-sensitive (XSD-based) declarations: where identically labeled elements can have multiple definitions in different contexts in the grammar.

A prototype system called XS3 (XML Structure and Semantic Similarity) has been developed to evaluate and validate our approach, conducting a large battery of experiments on large XML datasets, covering: One to One (comparing one document to one grammar), One to Many (comparing one XML document to a set of grammars and vice versa) and Set comparison (enabling XML document/grammar classification and ranked retrieval). Results highlight fine-grained (accurate) similarity scores, produced in typical case polynomial time.

The remainder of the paper is organized as follows. Section 2 presents preliminary notions. Section 3 describes our XML grammar tree representation model. Our XML document–grammar structure comparison algorithms are developed in Section 4. Section 5 presents the experimental tests. Section 6 briefly reviews the state of the art in XML document/grammar similarity approaches and related problems. Section 7 concludes the paper.

2. Preliminaries

2.1. XML document representation model

Following the Document Object Model (DOM) [77], XML documents represent hierarchically structured information and can be represented as rooted ordered labeled trees.

Definition 1 (Rooted Ordered Labeled Tree). It is a rooted tree in which the nodes are labeled and ordered. We denote by \(T[i] \) the \(i \)th node of \(T \) in preorder traversal, \(T[i].l \) its label, \(T[i].d \) its depth, and \(T[i].Deg \) its out-degree (i.e., the node’s fan-out). \(R(T) = T[0] \) designates the root node of tree \(T \). In the remainder of this paper, terms tree and rooted ordered labeled tree are used interchangeably.

Definition 2 (XML Document Tree). It is a rooted ordered labeled tree in which the nodes represent XML elements/attributes, labeled following element/attribute tag names. Element nodes are ordered following their order of appearance in the XML document. Attribute nodes appear as children of their encompassing element nodes, sorted left-to-right by attribute name, and appearing before sub-element siblings [48, 83].

Note that the order of attributes (unlike elements) is irrelevant in native XML [1], yet in the context of XML structure comparison and processing, attribute nodes are usually ordered (as described above) so as to reduce the complexity of the similarity evaluation process [48, 83]. Element/attribute values can be disregarded (structure-only) or considered (structure-and-content) in the comparison process following the application scenario (e.g., structure-only comparison is usually performed when processing heterogeneous documents for clustering/classifying [26, 48], whereas data values are generally considered in XML change management and data integration [25, 42]). In this paper, we address heterogeneous XML document–grammar comparison, and thus target element/attribute tag names (structure-only comparison) rather than data values. A sample XML document structure is depicted in Fig. 2a.

Note that hyper-links in XML documents (e.g., XLinks and IDREFs) and other types of nodes such as entities, comments and notations are usually disregarded in most existing structure comparison methods, e.g., [18, 26, 30, 33, 48], since they are not considered part of the core structure of XML documents.

2.2. XML grammar representation model

An XML grammar (e.g., DTD [16] or XSD [31]) is an entity consisting of a set of expressions describing XML element/attribute structural positions and data-types, and defining the rules elements/attributes adhere to in corresponding document instances (cf. Fig. 2b). The structural properties of XML grammars are basically captured by regular tree languages [46]. XML grammars being viewed as special regular tree grammars [21, 46, 47]. In formal language theory [34], a regular tree grammar consists of a set of production rules to transform trees. Formally:
Definition 3 (Regular Tree Grammar). It is represented as a tuple \(G = (N, T, R, p) \) where \(N \) is a set of non-terminal symbols, \(T \) is a set of terminal symbols, \(R \) is a set of regular expressions over \(N \cup T \), and \(p \) is a function \(p : N \rightarrow R \) that associates a non-terminal symbol \(n \in N \) with a regular expression \(r_n \in R \), producing a set of production rules of the form \(n \rightarrow r_n \). The language \(L(G) \), defined based on grammar \(G \), consists of all the possible trees that can be generated following the set of symbols and production rules defined in \(G \) [46].

Definition 4 (XML Grammar). It can be viewed as a special regular tree grammar [21,46,47], where each symbol underlines an element \(e \), such that non-terminal symbols underline composite XML element labels, terminal symbols underline simple (leaf node) element labels or attribute labels, and where the right hand side of their production rules \(e \rightarrow r_e \) are made of special regular expressions \(r_e \) which we identify as structural models (or structural expressions), defined using combinations of XML grammar constraint operators (instead of traditional regular expression operators). XML grammar constraint operators specify rules on the existence and repeatability of elements/attributes, namely: cardinality constraints, i.e., \(?, \ast, + \) in DTDs, MinOccurs and MaxOccurs in XSDs, and alternativeness constraints: And (sequence) and Or (choice) operators. In addition, special production rules are introduced in XML grammar languages (which do not exist in traditional tree languages [34]) to encode XML element data-type content models (e.g., \#PCDATA, String, Decimal, gYear, cf. Fig. 2b).

Note that the DTD language [16] allows context-free-grammars (local tree grammars) [46], which means that the structural model associated to an given element is independent of its position (i.e., context) in the document, the element being identified by its label (i.e., for an element \(e \) in grammar \(G \), there exists only one possible production rule \(e \rightarrow r_e \), i.e., only one possible structural model \(r_e \)). In contrast, XSD [31] allows context-sensitive grammars (single type tree grammars) [34] where

2 In language theory, terminal symbols are those not assigned to production rules, and thus cannot be broken down to smaller units.
the structural model associated to an element depends on its position in the document (e.g., one might have more than one production rule sharing the same element e in the grammar, e.g., $e \rightarrow r\ _e$ and $e \rightarrow r\ _e'$, following the element’s structural position). For further details, a study highlighting the correlation between XML grammar languages (namely DTD and XSD) and regular tree languages can be found in [46].

2.3. XML document/grammar structural similarity

We identify two kinds of XML document/grammar structure similarity: (i) Boolean comparison, referring to traditional XML structure validation and (ii) ranked comparison, which we refer to as approximate XML structure validation.

Definition 5 (XML Structure Validation (Boolean Comparison)). Denoted $G \models D$, an XML document (tree) D is deemed valid w.r.t. an XML (regular tree) grammar G (i.e., D conforms to G), if all element (attribute) tags in D match the element (attribute) structural models defined in G, considering structural model constraint operators. In other words, the result of the validation operation would be a Boolean value (true or false) indicating whether the document is valid (or not) w.r.t. the grammar, which comes down to checking whether the document tree is included in the language defined by the grammar, i.e., if $D \in L(G)$.

Definition 6 (Approximate XML Structure Validation (Ranked Comparison)). Denoted $G \models_{\approx_{[0,1]}} D$, approximate XML structure validation between an XML document (tree) D and an XML (regular tree) grammar G, with a similarity (relevance) score $\sigma \in [0,1]$ (i.e., D approximately conforms to G with a similarity score σ), is defined as the structural comparison (matching) between the element/attribute tag names in D and the structure models in G, in order to determine the best matches possible. Corresponding (best) matching scores are compiled into an overall similarity (relevance) score σ, highlighting the structural relatedness between D and G. In other words, similarity score σ underlines the degree of membership of D w.r.t. the grammar (regular tree) language $L(G)$.

Note that in the remainder of the paper, we sometimes use the simple notation: $G \models D$ to designate that document D approximately validates grammar G (omitting similarity score σ for ease of presentation). Also note that we adopt the concept of *similarity* as the inverse of a *distance function*, i.e., a smaller distance value underlining a higher similarity between the XML document and grammar being compared, and vice versa.

3. XML grammar tree representation

The main idea is to compute a tree representation of the XML grammar in order to apply a tree-to-tree edit distance for computing the document/grammar similarity. To do so, we aim to unfold the XML (regular tree) grammar G structural expressions into a set of conjunctive grammar trees $\{C\}$ of equivalent expressiveness, such that comparing a document tree D with grammar G would come down to comparing D with $\{C\}$. Here, the main difficulties in XML document/grammar tree-to-tree comparison lie within the disparities in the representation and processing of: (i) repeatable expressions defined via the *And* operator (cf. Fig. 3a), (ii) alternative declarations defined via the *Or* operator (cf. Fig. 3b), and (iii) recursive declarations (which could induce infinite loops of elements, cf. Fig. 3c).

Intuitively, the higher the disparities in document and grammar tree representations, the more complicated it becomes to perform the tree comparison (matching) task. Hence, we need to have expressive, yet simplified (flattened) XML grammar trees, which are (more easily) comparable to XML document trees. To do so, we proceed in three phases:

![Diagram](image-url)

Fig. 3. Disparities in tree representations between XML document and grammar structures, following the grammar (DTD) tree representation model in [10] (one of the central methods in the literature).
– **XML Grammar Transformation Rules**: First, we introduce a number of transformation rules to flatten XML grammar declarations, considering the most common XML grammar constraints.

– **One-to-One Document/Grammar Representation**: Second, we extend transformation rules to further simplify repeatable and recursive declarations in the grammar w.r.t. each document tree being compared (one-to-one).

– **XML Grammar Tree Model** based on the Disjunctive Normal Form: Where the resulting simplified (flattened) grammar is represented as a set of conjunctive grammars made solely of sequence declarations (i.e., elements connected via an And operator), eliminating alternative declarations (i.e., elements connected via the Or operator), producing grammar tree structures which are (more easily) comparable to document trees.

The remainder of this section develops each of the phases mentioned above, and provides examples.

3.1. XML grammar transformation rules and properties

An XML grammar transformation rule can be viewed as a binary function that transforms an XML structural expression into another, thus transforming one grammar into another. Formally:

Definition 7 (XML Grammar Transformation). Let \(\Omega \) denote the domain of XML grammar structural expressions (set of all grammar structural expressions allowed in our study, cf. Definition 4), a transformation rule \(R \) is defined as a function \(R : \Omega \rightarrow \Omega \), associating an input structural expression \(r_x \in \Omega \) with an output structural expression \(r_y \in \Omega \), such that \(r_y \) results from the application of transformation rule \(R \) on \(r_x \). When applied to all the structural expressions in an XML grammar \(G \), i.e., \(\forall r_x \in G \), \(r_x \rightarrow^R r_y \), we say that \(R \) is applied to \(G \), and transforms it into an output grammar \(G' \) made of the transformed expressions \(\forall r_x \in G \), denoted \(G \rightarrow^R G' \).

Definition 8 (Information Structure Preserving (ISP) property). Given an XML grammar (structural expression in) \(G \) and a grammar transformation rule \(R \) applied to \(G \), resulting in \(G' \), i.e., \(G \rightarrow^R G' \), rule \(R \) is deemed information structure preserving if any XML document tree \(D \) that conforms to \(G \) also conforms to \(G' \) and vice versa, i.e., \(\forall D, G \models D \iff G' \models D \). In other words, the original and the transformed grammar (structural expressions in) \(G \) have the same structural expressiveness, denoted \(G \cong G' \).

The transformation rules we provide in our study (cf. Table 1) verify the ISP property in most practical cases (with one exception discussed subsequently), i.e., they maintain the expressiveness of the input grammar’s structural models. They can be grouped in three main categories: simple expression flattening (Rule 1), repeatable sequence expression flattening (Rule 2) and repeatable alternative expression flattening (Rule 3).

Hereunder, we utilize a DTD-like syntax (even when presenting XSD operators) to ease the presentation. We introduce a simplified notation for \(\text{MinOccurs} \) and \(\text{MaxOccurs} \), such that an element (expression) \(e \) that is associated cardinality constraints: \(\text{MinOccurs} = x \land \text{MaxOccurs} = y \), is noted \(e^x_y \). Note that an element (expression) \(e \) with no associated cardinality constraints is identified as having a null constraint, which is equivalent to \(e^1_1 \), i.e., it appears exactly once in the XML document. We also highlight the notion of empty structural model (utilized in defining our transformation rules): given an XML grammar \(G \), an element \(e \in G \) has an empty structural model, noted \(e \rightarrow \bot \), (i.e., \(r_e \equiv \bot \)) when \(e \) does not encompass any sub-elements, and corresponds to a leaf node in the XML document tree instance.

Recall that we only target XML structure in our current study, and hence do not discuss element content data-types and values. Thus, elements with basic content models (e.g., \(\text{PCDATA}, \text{String}, \text{Integer}, \text{etc.} \)) will be processed as empty structural models (e.g., \(<!\text{ELEMENT dummy (#PCDATA)}> \), will be processed as production rule: \(\text{dummy} \rightarrow \bot \)).

The transformation rules in Table 1 verify the ISP property (cf. proofs in [73]), to the exception of Rule 1, which verifies the ISP property in some practical cases, but not in the general case:

Lemma 1.

– Given an XML grammar expression of the form \((A_i^x)^y \), transformation Rule 1 complies with the ISP property when any of the following conditions holds:

 – **Condition 1**: \((x = y = 1) \) or \((u = v = 1) \) (i.e., \((A_i^x)^y \equiv A_i^x \equiv A_i^x \equiv A_i^x)\).

 – **Condition 2**: \((x = u = 0) \) and \((y = 1 \lor v = 1) \) (i.e., \((A_i^u)^v \equiv (A_i^u)^v \equiv (A_i^u)^v \equiv (A_i^u)^v)\).

 – **Condition 3**: \((x = y \land (u = v)) \) (i.e., \((A_i^u)^v \equiv (A_i^u)^v \equiv (A_i^u)^v \equiv (A_i^u)^v)\).

Rule 1 may not comply with the ISP property otherwise.

For instance, ISP holds when transforming DTD expressions such as:

\((A^+) \rightarrow (A^+) \rightarrow A^+ \), since Condition 2 of Lemma 1 holds.
Table 1
Outline of our XML grammar transformation rules.

<table>
<thead>
<tr>
<th>N#</th>
<th>Rule</th>
<th>Type</th>
<th>ISP property</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((A_B^x)^+ \rightarrow R_1 A_B^y)** (general rule, handling both MinOccurs and MaxOccurs)</td>
<td>Simple expression flattening</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Simplified version of Rule 2 handling the MinOccurs constraint: ((A_B)^x \rightarrow R_{2.1} (A_B)), \ldots (A_B) where ((A_B)) is repeated (x) times</td>
<td>Repeatable sequence expression flattening (And)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>2.2</td>
<td>Simplified version of Rule 2 handling the MaxOccurs constraint: ((A_B)^y \rightarrow R_{2.2} (A_B)</td>
<td>\ldots (A_B)</td>
<td>\ldots (A_B)</td>
</tr>
<tr>
<td>3.1</td>
<td>Simplified version of Rule 3 handling the MinOccurs constraint: ((A_B^x)^{+} \rightarrow R_{3.1} (A_B), \ldots (A_B)) where ((A_B)) is repeated (x) times</td>
<td>Repeatable sequence expression flattening (And)</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Simplified version of Rule 3 handling the MaxOccurs constraint: ((A_B)^y \rightarrow R_{3.2} (A_B), \ldots (A_B)) where ((A_B)) is repeated (y) times. Note that ((A_B^y)^{+}) underlines that either (A) or (B) can occur, or nothing at all, which is different from ((A_B)) used in Rule 4. (\beta) underlining that (A) and (B) must occur together, or nothing at all</td>
<td>Repeatable alternative expression flattening (Or)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>3</td>
<td>((A_B)^{+} \rightarrow R_3 (A_B), \ldots (A_B)) where ((A_B)) is repeated (x) number of times, and ((A_B^y)^{+}) is repeated (z) times</td>
<td>Repeatable sequence expression flattening (And)</td>
<td></td>
</tr>
</tbody>
</table>

Note that \(A\) and \(B\) designate XML grammar structural expressions.

* Note that the special case of MaxOccurs = "unbounded" is covered in the following section.

Table 2
Outline of one-to-one document/grammar transformation rules.

<table>
<thead>
<tr>
<th>N#</th>
<th>Rule (given an XML document tree (D))</th>
<th>Type</th>
<th>ISP property</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2+</td>
<td>Simplified version of Rule 2+ handling the MaxOccurs constraint ((MinOccurs) is handled the same as in Rule 2.1): ((A_B)^{+} \rightarrow R_{2.2+} (A_B), \ldots (A_B)) where ((A_B)) is repeated (\text{ceil}\left(\frac{\text{MaxDeg}(D)}{\text{MinOccurs}(\beta)}\right)) times, such as (E = (A_B)^{+}) and (</td>
<td>E</td>
<td>) denotes the expression's cardinality w.r.t. the main And sequence operator (e.g.,</td>
</tr>
<tr>
<td>2+</td>
<td>((A_B)^{+} \rightarrow R_2 (A_B), \ldots (A_B)) where ((A_B)) is repeated (x) times, whereas ((A_B)) is repeated (z) times</td>
<td>Repeatable alternative expression flattening (And)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>3.2+</td>
<td>Simplified version of Rule 3+ handling the MaxOccurs constraint ((MinOccurs) is handled the same as in Rule 3.1): ((A_B)^{+} \rightarrow R_{3.2+} (A_B), \ldots (A_B)) where ((A_B)) is repeated (\text{MaxDeg}(D)) times</td>
<td>Repeatable sequence expression flattening (And)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>((A_B)^{+} \rightarrow R_3 (A_B), \ldots (A_B)) where ((A_B)) is repeated (x) times, and ((A_B)) is repeated (z) times</td>
<td>Repeatable alternative expression flattening (And)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>4</td>
<td>A strong-linear recursive expression defined on element (e), denoted</td>
<td>Recursive expression flattening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e_{\text{ref}} \Rightarrow e_{\text{occ}} \Rightarrow \ldots e_{\text{occ}} \Rightarrow e_{\text{occ}} \Rightarrow \ldots e_{\text{occ}} \Rightarrow e_{\text{ref}}) where (e) denotes (i)th nested occurrence of element (e), repeated (n = \text{ceil}\left(\frac{\text{Depth}(D) - 1}{\text{MinOccurs}(\beta) - 1}\right)) times</td>
<td>Recursive expression flattening</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>

Note that \(A\) and \(B\) designate XML grammar structural expressions.

* The function \(\text{ceil}(x)\) returns the smallest integer value that is not less than \(x\). The formulas' proofs are provided in [73].

Likewise, transforming expression \((A_B^x)^{+} \rightarrow R_1 A_B^y\). ISP holds since Condition 3 of Lemma 1 holds.

However, consider an expression of the form \((A_B^x)^{+} \rightarrow R_1 A_B^y\). Here, the ISP property does not hold since the resulting expression does not preserve the structural expressiveness of its original counterpart (neither of Lemma 1’s conditions holds): the transformed expression underlines that expression \(A\) can occur a minimum of \(2\) times and a maximum of \(4\) times (i.e., it accepts \(2\)-to-\(4\) occurrences of element dummy), whereas the original expression underlines that expression \(A\) can occur either \(2\) times, or \(4\) times.

In addition, we extend the repeatable (sequence/alternative) expression flattening rules in Table 1 to handle the special cases of MinOccurs = ‘Unbounded’ (infinite repetitions) and recursive declarations, as shown in the following.

3.2. One-to-one document/grammar representation

3.2.1. Handling repeatable expressions
As described in Table 1, the simplification of repeatable sequence and alternative expressions, of the form \((A_B)^{+}\) and \((A_B^y)^{+}\), following Rule 2 and Rule 3, requires the infinite repetition of flattened expressions \(((A_B)^{+})\) and \((A_B^y)^{+}\) respectively, in order to verify the ISP property. Yet since our method is one-to-one in comparing one single XML document to one single XML grammar, repeatable expressions can be further simplified without loss of expressiveness in the
context of the XML document at hand. This can be done by repeating the flattened expressions: i.e., \((A, B)\) w.r.t. Rule 2 and \(A^*_j B^*_i\) w.r.t. Rule 3, only a finite number of times in the transformed grammar, necessary to cover all possible structural configurations of the concerned XML elements/expressions following the original grammar expression. Hence, we propose extensions of transformation Rule 2 (namely Rule 2.2) and Rule 3 (namely Rule 3.2) in Table 2.

Fig. 4. Flattening repeatable and recursive XML declarations.

3.2.2. Handling recursive declarations

The problem of handling recursive declarations is comparable to that of handling repeatable expressions such that the recursive expression would have to be repeated (in certain cases) an infinite number of times in the flattened XML grammar to preserve structural expressiveness. Yet, since our method is one-to-one in comparing one XML document to one XML grammar, recursive grammar expressions can be simplified without loss of expressiveness w.r.t. a particular document tree. We say that the rule transforming \(G\) into \(G'\) verifies the ISP property w.r.t. document tree \(D\) (cf. proofs in [73]). More importantly, Rule 2+ and Rule 3+ have allowed to simplify (possibly) infinite size expressions (originally required to preserve grammar expressiveness in the general case) into expressions which sizes vary linearly w.r.t. the out-degree of the document tree, \(\text{MaxDeg}(D)\) (cf. example in Fig. 4a).

\[3.2.2. \text{Handling recursive declarations}\]

\[\text{The problem of handling recursive declarations is comparable to that of handling repeatable expressions such that the recursive expression would have to be repeated (in certain cases) an infinite number of times in the flattened XML grammar to preserve structural expressiveness. Yet, since our method is one-to-one in comparing one XML document to one XML grammar, recursive grammar expressions can be simplified without loss of expressiveness in the context of the XML document at hand. To do so, we propose to repeat the recursive nesting only a finite number of times, necessary to cover all possible structural configurations of the concerned XML elements (following the original recursive declaration) in the XML document tree being compared.}\]
Definition 9 (Recursive XML Grammar). An XML grammar G is recursive if it contains an element e reachable from itself, denoted by $e_{ref} \rightarrow e_{rec}$, where e_{ref} underlines the original element declaration and e_{rec} its recursive reference in the grammar (e.g., in DTD expression <!ELEMENT dummy (a, b, dummy)>, the first dummy element is denoted $dummy_{ref}$ whereas the second is denoted $dummy_{rec}$).

Definition 10 (Strong-Linear Recursive XML Grammar). An XML grammar G is strong-linear recursive if it is recursive, and if for each recursive element $e_{ref} \rightarrow e_{rec}$ in G, e_{rec} occurs at most once in the structural expression of its containing element, such as e_{rec} is not repeatable, and where every other element reachable from e_{ref} ($\forall e \in G$ such that $e_{ref} \not\rightarrow e$) is non-recursive [11,23] (cf. Fig. 4b).

A simple example is presented in Fig. 4c. Here, the recursive declaration defined on node Root in grammar G is transformed into a chain of non-recursive nestings consisting of the elements comprised within $Root_{ref}$ and $Root_{rec}$, repeated 5 times w.r.t. XML document tree depth (=5) and the nesting depth of the recursive declaration (=2).

3.3. Applying transformation rules

As discussed above, most of our transformation rules verify the ISP property to the exception of Rule 1 which only conditionally complies with ISP. As a result, the transformation rules (to the exception of Rule 1) verify the Church–Rosser property [35,76] and can be applied to an input XML grammar, in any sequence order, producing an output grammar having the same structural expressiveness (as the input grammar):

Definition 13 (Extended Church–Rosser (ECR) property). Let Ω be the domain of (structural expressions in) XML grammars, and $\rho = \{R_1, R_2, R_3, \ldots\}$ be the set of XML grammar (expression) transformation rules defined on Ω, ρ has the extended Church–Rosser property w.r.t. Ω if $\forall G_1, G_2, G_3 \in \Omega$, and $\forall R_{1}, R_{2} \in \rho$, $|G_1 \rightarrow^{R_1} G_2 \land G_1 \rightarrow^{R_2} G_3| \Rightarrow \exists G_4, G_4' \in \Omega, \exists R_{1}, R_{2} \in \rho$ such that $|G_2 \rightarrow^{R_1} G_4 \land (G_3 \rightarrow^{R_2} G_4')$ where $(G_4 \triangleq G_4')$ (the resulting (structural expressions in) grammars G_4 and G_4' have the same structural expressiveness (cf. ECR diagram in Fig. 5a).
In other words, given an input XML grammar G, the transformation rules in Table 1 (except the conditional case of Rule 1), can be applied to G in any sequence order, always resulting in a transformed grammar G' having the same structural expressiveness as its original counterpart ($G \cong G'$). The same carries for our one-to-one document/grammar transformation rules in Table 2 (cf. proof in [73]).

Consider the example in Fig. 5b. Input grammar declaration root $(a, (b | (c, d, e)))$, is transformed, without any loss of expressiveness, to $\text{root} \ (a, (b_10 | (c, d, e) | e)), ((c, d, e) | e), \ldots) f_1^0$, via the application of two different sequences of transformation rules. In the resulting grammar declaration, all repeatable expressions have been flattened, cardinality constraints being uniquely associated to single elements (i.e., b_1^0 and f_1^0) without loss of expressiveness.

Note that the ISP and ECR properties reflect the correctness and completeness of the transformation rules. Minimality also seems intuitive since the transformation rules have been specifically defined to deal with exactly each of the common grammar constraints considered in our study, and cannot be further reduced. Nonetheless, the nature of the transformation rules applied, during a grammar simplification task, might differ depending on the nature of the grammar expressions (as shown in the example of Fig. 5b). Hence, despite yielding the same end result (the same transformed grammar), the minimality of the number of transformations applied might not always be guaranteed.

3.4. XML grammar tree model based on the Disjunctive Normal Form

To produce simple grammar tree structures comparable to document trees, we propose to unfold an XML grammar into a single tree or a set of trees, depending on the occurrences of the And (sequence) and Or (choice) operators. To do so, we introduce the Disjunctive Normal Form of an XML grammar as a set of conjunctive grammars:

Definition 14 (Conjunctive XML Grammar). A grammar G is conjunctive if all structural expressions in G are sequence expressions, i.e., $\forall e \rightarrow r_e \in G, r_e$ is made of elements/expressions connected via the And operator.

Definition 15 (XML Grammar Disjunctive Normal Form (DNF)). The Disjunctive Normal Form (DNF) of an XML grammar G is the set of conjunctive grammars, $\text{DNF}(G) = \{C_i\}_{i \in \mathbb{C}}$ which are equivalent in their expressiveness to G taking into account the alternative structural expressions in G, i.e., $\forall r_e \in G$ such that $e \rightarrow r_e$, where r_e is made of elements/expressions connected via the Or operator (cf. Fig. 6).

The disjunctive normal form of an XML grammar verifies by definition the ISP property, such that the grammar’s expressiveness (language) is distributed among its constituent conjunctive grammars, $L(G) = \cup_{C_i \in \text{DNF}(G)} L(C_i)$, denoted as $G \cong \text{DNF}(G)$. In other words, given an XML grammar G, and its representation in disjunctive normal form $\text{DNF}(G) = \{C_i\}_{i \in \mathbb{C}}$, any XML document tree D that conforms to G, will conform to at least one of its conjunctive grammars, i.e., $\forall G = D, \exists C \in \text{DNF}(G)$ such that $C \models D$ (the proof carries directly from the definition of DNF).

Note that the number of conjunctive grammars, resulting from the DNF of an input XML grammar, depends on the number and configurations of Or operators in the input grammar expressions. This may generate a proliferation of conjunctive grammars depending on the expressiveness of the grammar declarations. In this context, we have conducted a mathematical analysis covering some of the most common configurations of alternative (Or) expressions, based on surveys of real DTDs and XSDs in [11,23,38] (some statistics are provided in Section 5.6). Results show that the most common alternative expressions generate a number of conjunctive grammars linear in the number of Or operators involved (e.g., in Fig. 6, $|\text{DNF}(G)| = 1 + \text{num-ber of Or operators in } G = 3$, while only certain specific cases (of usually mixed: And–Or expressions) yield polynomial and/or exponential sized DNF representations (mathematical details are provided in Appendix A).

As a result, we model each resulting conjunctive grammar $C \in \text{DNF}(G)$ as a special rooted ordered labeled tree:

Definition 16 (Conjunctive XML Grammar Tree). It is a rooted ordered labeled tree in which nodes represent XML element/attributes, labeled following element/attribute tag names, and such that each node is assigned the corresponding element/attribute ($\text{MinOccurs}/\text{MaxOccurs}$) cardinality operator. Element nodes are ordered following their order of appearance in the XML grammar declarations. Attribute nodes appear as children of their encompassing element nodes, sorted left-to-right by attribute name, and appearing before all sub-element siblings (similarly to XML document trees, cf. Definition 2). Formally, We model a conjunctive XML grammar tree as $C = (N_C, E_C, L_C, CC_C, S_C)$:

- N_C is the set of nodes (i.e., vertices) in C.
- $E_C \subseteq N_C \times N_C$ is the set of edges underlining the XML element/attribute containment relation.
- L_C is the set of labels corresponding to the nodes of C.

![Fig. 6. Representing an XML grammar in its disjunctive normal form.](image-url)
CC_C is the set of cardinality constraints associated to the nodes of C.

g_C is a function $g_C : N_C \to L_C \times \text{CC}_C$ that associates a label $l \in L_C$ and a cardinality constraint $cc \in \text{CC}_C$ to each node $n \in N_C$, following element/attribute ordering as described above.

We denote by $C[i]$ the ith node of C in preorder traversal, represented as a doublet (l, cc) where $l \in L_C$ and $cc \in \text{CC}_C$ are respectively its label and cardinality constraint, referred to as $C[i].l$ and $C[i].cc$ (since cardinality constraints amount to ‘MinOccurs’ and ‘MaxOccurs’, we refer to the latter as $C[i].\text{MinOccurs}$ and $C[i].\text{MaxOccurs}$, cf. Fig. 7a) $C[i].d$ represents the node’s depth in the tree, and $C[i].\text{Deg}$ its out-degree. $R(C) = C[0]$ designates the root of tree C.

Recall that while the order of attribute children is irrelevant in XML [1], yet we represent the latter as ordered tree nodes in both our document and grammar tree models (as described above) in order to reduce the complexity of the similarity computation process,3 while seamlessly affecting the accuracy of the similarity results (since attribute nodes, in both XML documents and grammar trees, are ordered in the same way).

The algorithm for transforming an XML grammar into its tree representation is provided in Appendix B.

3.5. Running example: sample XML grammar and corresponding tree representation

Consider XSD grammar Paper.xsd in Fig. 7b, to be compared with XML document tree D in Fig. 2a.

The DNF form of Paper.xsd, unfolded in a set of conjunctive trees, is shown in Fig. 7c. Grammar Paper.xsd is first run through our transformation rules (cf. Fig. 8). Then, the resulting flattened grammar, encompassing Or operators, is represented as three conjunctive grammar trees (Fig. 7b and c) underlying the three structural configurations that can be obtained following the different combinations of the Or operators.

3 E.g., most unordered tree distance algorithms are of exponential time, compared to average polynomial ordered tree methods [12].
Note that in addition to handling more expressive XSD constraints (MinOccurs and MaxOccurs), as well as alternative expressions and recursive declarations, our XML grammar tree model also straightforwardly handles context-sensitive XSD declarations, where identically labeled elements can have multiple definitions in different contexts in the grammar (as opposed to context-free DTD declarations). For instance, grammar Paper.xsd contains two elements shaving the same label Paper: (i) the grammar root node element and (ii) the first child of element url. Hence with XML documents and grammars represented as rooted ordered labeled trees, the problem of XML document/grammar structural comparison now comes down to comparing corresponding trees.

4. XML document and grammar tree comparison

As mentioned previously, our approach consists of two main phases: (i) Tree Representation of documents and grammars as rooted ordered labeled trees (described in the previous section), (ii) and Tree Edit Distance Comparison for computing the similarity between document and grammar tree structures. The overall algorithm is presented in Fig. 9.

After transforming the XML document and XML grammar into their tree representations (Fig. 9, lines 1–2), the edit distance between the document tree and each of the conjunctive grammar trees is computed (lines 3–10).

\[\text{TED}(D, C) = \min \{ \text{CostES} \} \]

The comparison is undertaken using concurrent computing, i.e., multi-threading, evaluating the similarity between the document tree and each of the conjunctive grammar trees simultaneously (lines 5–9) since they constitute a forest of separate tree structures (corresponding to the input grammar) following our grammar tree model, without neither interfering nor relying on each other’s results. Tree edit operations costs are computed (via algorithms TOCXDoc and TOCXGram, line 7, mentioned in the following section), and are consequently provided as input to the main tree edit distance algorithm (TEDDocXGram, line 8).

Algorithms TOCXDoc and TOCXGram are developed in the following sections. Algorithm TOCXDoc is provided in [73].
by another one. A complex tree edit operation is a sequence of atomic tree edit operations, treated as one single operation, such as the insertion/deletion of a whole sub-tree, or the relocation (moving) of a sub-tree from one position into another in its containing tree. A sequence of edit operations, called an edit script, \(ES = \langle op_1, \ldots, op_k \rangle \) can be applied on a tree \(T \), producing a resulting tree \(T_0 \) by applying the edit operations \(op_1; \ldots; op_k \) in \(ES \) to \(T \), following their order of appearance in the script. By associating costs, \(\text{Cost}_{op} \), with edit operations, the cost of an edit script is defined as the sum of the costs of its component operations [12,18]:

\[
\text{Cost}_{ES} = \sum_{i=1}^{k} \text{Cost}_{op_i}.
\]

Then, the maximum similarity (minimum distance) between the document tree and each conjunctive grammar tree is evaluated as the overall document/grammar structural similarity value (line 10). One can realize, based on the definition of \(TED_{XDoc,XGram} \), that our approach allows both:

- **Exact** document/grammar structure validation (Definition 5), where \(TED_{XDoc,XGram}(D, G) = 0 \Rightarrow C \models D \),
- **Approximate** document/grammar validation (cf. Definition 6), where \(TED_{XDoc,XGram}(D, G) \neq 0 \Rightarrow C \not\models_D D \), such that \(\sigma \) designates a similarity value which is inversely proportional to \(TED_{XDoc,XGram}(D, C) \): the lesser the similarity \(\sigma \), the larger the distance \(TED_{XDoc,XGram}(D, C) \), i.e., the larger the edit script cost needed to transform \(D \) into a document tree \(D' \) such that \(C \models_D D' \).

As for the method to compute \(TED_{XDoc,XGram}(D, C) \), we build on a dynamic programming formulation similar to a central tree edit distance algorithm by Nierman and Jagadish in [48], mainly in terms of the edit operations utilized. However, we introduce novel recurrences specifically designed to handle XML grammar cardinality constraints (namely \(\text{MinOccurs} \) and \(\text{MaxOccurs} \)).

In the reminder, we first discuss tree edit operations costs in Section 4.1, and subsequently develop the main algorithm and similarity measure in Sections 4.2 and 4.3. Section 4.4 presents computation examples. Time and space complexity analyses are provided in Section 4.5.

4.1. Tree edit operations costs: \(TOC_{XDoc} \& \ TOC_{XGram} \)

Our tree edit distance algorithm employs five edit operations: (i) **leaf node insertion**, (ii) **leaf node deletion**, (iii) **node update**, (iv) **tree insertion** and (v) **tree deletion** adopted from [18,48] (formal definitions are provided in Appendix C). However, a
central issue in most edit distance approaches is how to determine edit operations cost values, in order to consequently determine the edit distance value (i.e., the minimum cost of all possible edit scripts). An intuitive way would be to assign identical unit costs to single node operations:

\[
\begin{align*}
\text{Cost}_{\text{ins}}(x) &= \text{Cost}_{\text{del}}(x) = 1 \\
\text{Cost}_{\text{upd}}(x, y) &= \text{Cost}_{\text{upd}}(x', y') = 1 \text{ when } x' \neq y', \text{ otherwise, } \text{Cost}_{\text{upd}} = 0,
\end{align*}
\]

underlining that no changes are to be made to the label of node \(x\).

As for tree deletion (insertion) operations, they can be naturally evaluated as the sum of the costs of deleting (inserting) all individual nodes in the considered sub-tree [26], such as:

\[
\text{Cost}_{\text{del/ins} \text{Tree}}(T) = \sum_{\text{all nodes } x_i} \text{Cost}_{\text{del/ins}}(x_i)
\]

Following our approach, computing TED\(_{\text{XDoc, XGram}}(D, C)\) comes down to transforming document tree \(D\) into \(D'\) to obtain \(C \models D'\). To do so, node/tree deletion operations will be applied on the document tree \(D\) to remove those nodes which do not conform to the grammar, whereas node/tree insertion operations will add grammar nodes to the document tree \(D\) in order to obtain \(C \models D'\). Yet, recall that nodes in grammar trees are associated cardinality constraints: \textit{MinOccurs} and \textit{MaxOccurs}, specifying the allowed number of occurrences corresponding to a (sub-tree rooted at a) given node. Hence, grammar tree insertion operations costs are updated accordingly in order to evaluate TED\(_{\text{XDoc, XGram}}\):

- **Case 1 - Optional Grammar Nodes:** An optional grammar tree node \(x_i \in C\) such as \(x_i \text{ MinOccurs} = 0 \lor x_i \text{ MaxOccs}\), along with its sub-tree \(C_i\) (i.e., the sub-tree rooted at \(x_i = R(C_i)\)), do not affect the costs of tree insertion operations applied on \(C\). In other words, node/sub-tree \(x_i/C_i\) do not have to be inserted in the document tree \(D\) to obtain \(C \models D'\), and hence should not affect edit distance cost.

- **Case 2 - Mandatory Grammar Nodes:** A mandatory and/or repeatable grammar tree node \(x_i \in C\) such as \(x_i \text{ MinOccurs} \neq 0 \lor x_i \text{ MaxOccs}\), along with its sub-tree \(C_i\) (where \(R(C_i) = x_i\)), affect the costs of tree insertion operations applied on \(C\), considering the minimum number of occurrences required for \(x_i(C_i)\), i.e., \(\text{min}(x_i \text{ MinOccs}, x_i \text{ MaxOccs}) \equiv x_i \text{ MinOccs}\). In other words, when \(x_i/C_i\) is mandatory/repeatable, then it should occur (or should be inserted) in the document tree \(D\), a minimum number of times \(x_i \text{ MinOccs}\) necessary to obtain \(C \models D'\), thus affecting tree insertion operations costs accordingly.

Formally, given a conjunctive XML grammar tree \(C\) (with root node \(R(C)\) of degree \(k\)), and its first level sub-trees \(C_1, \ldots, C_k\) (i.e., the sub-trees rooted at the children nodes of \(R(C)\)), we compute corresponding tree operations costs as:

\[
\text{Cost}_{\text{insTree}}(C) = \text{Cost}_{\text{Ins}}(R(C)) + \sum_{\text{all first-level sub-trees } C_i \text{ of } C} \text{Cost}_{\text{insTree}}(C_i) \times R(C_i).\text{MinOcc}
\]

where \(R(C_i).\text{MinOccs}\) underlines the \textit{MinOccs} constraints associated to the root of \(C_i\).

The algorithm for computing insert tree operations costs is provided in Fig. 10. Here, we only develop XML grammar tree processing, TOCXGram, and omit the pseudo-code for XML document tree processing, TOCXDoc (computing tree deletion operations costs) since the latter is straightforward following formula 2. Algorithm TOCXGram goes through all sub-trees of the conjunctive XML grammar tree, computing grammar sub-tree insertion operations costs following Formula 3 (Fig. 10, lines 9–12), taking into account corresponding sub-tree node \textit{MinOccs}.

Consider sample grammar tree \(C\) in Fig. 11. Tree insertion operations costs following TOCXGram are computed as:

- \(\text{Cost}_{\text{InsTree}}(C_1) = \text{Cost}_{\text{Ins}}(R(C_1)) + \left[\text{Cost}_{\text{Ins}}(x_2) + \text{Cost}_{\text{Ins}}(x_3) + 0 + \text{Cost}_{\text{Ins}}(x_4) \right] = 3\).
- \(\text{Cost}_{\text{InsTree}}(C_2) = \text{Cost}_{\text{Ins}}(R(C_2)) + \left[\text{Cost}_{\text{Ins}}(x_6) + \text{Cost}_{\text{Ins}}(x_7) \right] = 3\).
- \(\text{Cost}_{\text{InsTree}}(C_3) = \text{Cost}_{\text{Ins}}(R(C)) + \left[\text{Cost}_{\text{InsTree}}(C_1) \times 2 + \text{Cost}_{\text{InsTree}}(C_2) \times 0 \right] = 7\).

Here, the cost of inserting sub-tree \(C_1\) rooted at the node of label \textit{Author}(\(x_1\)) is equal to 3. This is because node \(x_1 \text{ MinOccs} = 0\), which means that the occurrence of node \textit{MiddleName} is not required (in the transformed document tree for it to conform to the grammar). In turn, the cost of inserting tree \(C\) (as a whole) is equal to 7, since its first-level sub-tree \(C_1\) is required to appear a minimum number of 2 times in the transformed document tree \((R(C_1).\text{MinOccs} = x_1 \text{ MinOccs} = 2\), yielding \(\text{Cost}_{\text{InsTree}}(C_1) \times 2\)), whereas sub-tree \(C_2\) is optional (yielding \(\text{Cost}_{\text{InsTree}}(C_2) \times 0\)).

Note that both \textit{MinOccurs} and \textit{MaxOccurs} constraints are used in our main tree edit distance algorithm, to verify whether the minimum/maximum allowed number of occurrences for a given grammar node (sub-tree) are violated in the document tree being compared, so as to allocate tree edit operations accordingly (described in the following section).

In this study, we restrict our presentation to the basic cost schemes above, since we focus on the structural properties of XML documents and grammars (i.e., considering parent/child relationships and ordering among XML elements, identified by their labels). The investigation of alternative tree operations cost models (considering for instance the semantic relatedness between document and grammar node labels given a semantic reference such as WordNet [45], Wikipedia [84], or Google [37]) will be addressed in a dedicated upcoming study.
4.2. Tree Edit Distance (TED) algorithm: TEDXDoc

As briefly mentioned previously, we propose a novel tree edit distance method to consider the structural properties of XML document trees and conjunctive grammar trees (inspired by existing tree edit distance proposals, namely [26,48]). Hereunder, we first describe the overall process of our main algorithm. Then, we present the Traditional TED Recurrence formulation as the basic foundation of our algorithm, and introduce our Extended TED Recurrence formulation taking into account the \textit{Minoccurs} and \textit{MaxOccurs} constraints. We then develop computation examples.

4.2.1. Main algorithm

The overall algorithm TEDXDoc for computing the edit distance between an XML document tree D and a conjunctive grammar tree C is shown in Fig. 12. It builds on an Extended TED Recurrence to identify the minimum cost edit script (i.e., the minimum distance, thus maximum similarity) transforming D into D_0 to obtain C.\footnote{TOCXGram in Fig. 10.}

First, the \textit{update} operation is applied to the roots of the sub-trees being compared (relabeling sub-tree root nodes, Fig. 12, line 6). Then, \textit{tree deletion} operations are applied to corresponding document first-level sub-trees (line 7), and \textit{tree insertion} operations are applied on grammar first-level sub-trees taking into account the \textit{MinOccurs} constraint (line 8), in order to consider the minimum number of occurrences required in the document tree so as to conform to the grammar tree (as discussed with sub-tree operations costs in Section 4.1). Consequently, the edit distance process TEDXDoc is recursively called once for each pair of sub-trees D_i and C_j occurring at the same structural level (depth) in the document and grammar trees being compared. This is undertaken following our Extended TED Recurrence formula (lines 11–24) described in detail the following.

\begin{algorithm}
\textbf{Algorithm TOCXGram}\text{ }
\begin{algorithmic}[1]
\State \textbf{Input:} C \hspace{1cm} // XML conjunctive grammar tree
\State \textbf{Output:} \{$\text{Cost}_{\text{Tree}}(C)$\} \hspace{1cm} // Tree insertion operations costs, for all sub-trees in C
\Begin
\State $M = \text{Degree}(C)$ \hspace{1cm} // The number of first level sub-trees in conjunctive grammar tree G. \\
\State $\text{Cost}_{\text{Tree}}(C) = \text{Cost}_{\text{Inst}}(R(C))$ \hspace{1cm} // Initializing grammar sub-tree costs \hspace{1cm} // with the cost of corresponding sub-tree root node.
\If ($M = 0$)
\State \{ \hspace{1cm} // Leaf node operations are assigned unit costs
\State $\text{Cost}_{\text{Ins}}(R(C))$ \hspace{1cm} // in our approach (basic cost model),
\State \} \hspace{1cm} // Tree deletion operations
\Else
\State \{ \hspace{1cm} // Going through the first level sub-trees of C, C_i, $i=1...M$
\State $\text{Cost}_{\text{Tree}}(C) = \text{Cost}_{\text{Tree}}(C) + (\text{TOCXGram}(C_i) \times R(C_i) \times \text{MinOccurs})$ \hspace{1cm} // in our approach (basic cost model),
\State \}
\End
\State \Return \{$\text{Cost}_{\text{Tree}}(C)$\} \hspace{1cm} // Tree insertion operations costs
\End
\end{algorithmic}
\end{algorithm}
section. The minimum distance between all sub-trees (first-level, second-level, and so on) of the document tree D and grammar tree C is finally returned (line 28). When the grammar tree is free of constraint operators (i.e., when all elements in C are associated default constraints $MinOccurs = MaxOccurs = 1$), our algorithm simplifies to a classical TED process (namely the algorithm in [48]).

4.2.2. TED recurrences

$TED_{D_{\text{Doc}}, C_{\text{Gram}}}(D, C)$ computes, as sub-routines, the edit distance between pairs of first-level sub-trees $D_i \in D$ and $C_j \in C$ (i.e., the sub-trees rooted at the children nodes of $R(D)$ and $R(C)$ respectively), noted $TED_{D_{\text{Doc}}, C_{\text{Gram}}}(D_i, C_j)$. We use left-to-right numbering to identify first-level sub-tree order. We denote by $Dist[i, j]$ the edit distance matrix keeping track of the edit distance between document tree D with only its i first-level sub-trees, identified as partial document tree D_i, and grammar tree C with only its j first-level sub-trees, identified as partial grammar tree C_j.

Hence, a traditional tree edit recurrence adopted from existing approaches [26,48] can be represented as:

Traditional TED Recurrence. Consider the pair of first-level sub-trees $D_i \in D$ and $C_j \in C$. Then:

$$
\text{Dist}[i, j] = \min \left\{ \begin{array}{ll}
\alpha = \text{Dist}[i-1, j] + \text{Cost}_{\text{DefTree}}(D_i) \\
\beta = \text{Dist}[i, j-1] + \text{Cost}_{\text{InsTree}}(C_j) \\
\gamma = \text{Dist}[i-1, j-1] + TED_{D_{\text{Doc}}, C_{\text{Gram}}}(D_i, C_j) \\
\end{array} \right\}
$$

Fig. 12. Algorithm $TED_{D_{\text{Doc}}, C_{\text{Gram}}}$ for comparing an XML document tree and a conjunctive grammar tree.
Proof. Our goal is to find the minimum cost script transforming $D(i)$ into a partial document tree $D(i)'$ such that $C(j) = D(i)'$. This can be computed in three ways:

- Having $Dist[i - 1, j]$, we spend $\alpha = Dist[i - 1, j] + Cost_{\text{DelTree}}(D_i)$, deleting D_i from $D(i)$.
- Having $Dist[i, j - 1]$, we spend $\beta = Dist[i, j - 1] + Cost_{\text{InsTree}}(C_j)$, inserting one occurrence of C_j into $D(i)$.
- Having $Dist[i - 1, j - 1]$, we spend $\gamma = Dist[i - 1, j - 1] + TED_{\text{Doc}, XGram}(D_i, C_j)$, transforming D_i into D_i' such that $C_j = D_i'$.

Since these three cases express all possible tree edit paths yielding $Dist[i, j]$, we keep the minimum from these costs. □

Proof description. Traditional TED Recurrence carries from Nierman and Jagadish’s approach [48]. The minimum cost script transforming partial tree $D(i)$ into $D(i)'$ in order to have $C(j) = D(i)'$ can be computed in three ways:

- Having $Dist[i - 1, j]$ and the cost of deleting sub-tree D_i, we need to spend at least $Dist[i - 1, j] + Cost_{\text{DelTree}}(D_i)$ to transform partial document tree $D(i)$ into $D(i)'$ in order to obtain $C(j) = D(i)'$.
- Having $Dist[i, j - 1]$ and the cost of inserting sub-tree C_j, we need to spend at least $Dist[i, j - 1] + Cost_{\text{InsTree}}(C_j)$ to transform $D(i)$ into $D(i)'$ to obtain $C(j) = D(i)'$.
- Having $Dist[i - 1, j - 1]$, we need to spend at least $Dist[i - 1, j - 1] + TED_{\text{Doc}, XGram}(D_i, C_j)$ to transform $D(i)$ into $D(i)'$ to obtain $C(j) = D(i)'$.

Since the three cases above express all possible tree edit paths following the set of edit operations considered in our approach, hence we keep in $Dist[i, j]$ the minimum from the three costs $\alpha, \beta,$ and γ, i.e., the minimum attainable distance between $D(i)$ and $C(j)$ allowing to transform $D(i)$ into $D(i)'$ such that $C(j) = D(i)'$.

$TED_{\text{Doc}, XGram}$ is recursively applied on all sub-trees in D and C (first-level, second-level, so on, cf. γ computation, following [48]), hence identifying the minimum cost script transforming D into a document tree D' such that $C = D'$. In short, the Traditional TED Recurrence underlines the most basic case where the conjunctive grammar tree C is virtually free of cardinality constraint operators (i.e., when all elements in C are associated default constraints MinOccurs = MaxOccurs = 1), such that all elements (sub-trees) are mandatory and should appear exactly once.

Hence, we propose an Extended TED Recurrence to specifically consider the MinOccurs and MaxOccurs cardinality constraints when comparing document and grammar trees. To do so, we keep track of the number of occurrences $NbOcc$ of the document sub-trees corresponding to each grammar sub-tree in the conjunctive grammar at hand (which will allow us to verify whether the corresponding grammar sub-tree MinOccurs/MaxOccurs constraint has been met, or violated, and if so to what extent). Sub-tree occurrences in the document tree can be exact (conforming, $=)$ or approximate (similar enough, \approx) to the grammar sub-tree.

Consider the example in Fig. 13, comprising of conjunctive grammar tree C and document trees $D, E,$ and F. Here, one can realize that grammar sub-tree C_2 occurs three times in document tree D, where $C_2 = \{D_1, D_2, D_3\}$. Also, grammar sub-tree C_2 occurs once in document tree E, where $C_2 = \{E_2\}$. Yet, sub-tree C_2 occurs 4 times in document tree F, where $C_2 = \{F_2, F_4, F_5\}$ whereas $C_2 \approx \{F_3\}$. Note that we can computationally decide whether a document sub-tree D_i consists of an exact ($=$) or approximate (\approx) occurrence of a grammar sub-tree C_j based on the corresponding edit distance score $TED_{\text{Doc}, XGram}(D_i, C_j)$ (e.g., $TED_{\text{Doc}, XGram}(D_i, C_j) = 0$ is obtained when $C_j = D_i$, whereas $TED_{\text{Doc}, XGram}(D_i, C_j) \neq 0$ is obtained when $C_j \approx D_i$).

Hence, based on the Traditional TED Recurrence, and the notion of number of occurrences: $NbOcc$, we can effectively consider the MinOccurs and MaxOccurs constraints in our tree edit distance computations as follows:

Extended TED Recurrence (TED^*). Consider the pair of first-level sub-trees $D_i \in D$ and $C_j \in C$. Let $NbOcc[j]$ be a special counter keeping track of the number of occurrences (exact/approximate matches) of grammar sub-tree C_j in the document tree D. Then, considering $R(C_i).MinOccurs$ and $R(C_i).MaxOccurs$:

$$
Dist[i, j] = \min \left\{ \begin{array}{l}
\alpha = Dist[i - 1, j] + Cost_{\text{DelTree}}(D_i) \\
\beta = Dist[i, j - 1] + Cost_{\text{InsTree}}(C_j) \times R(C_j).MinOccurs \\
\gamma = \begin{cases}
\gamma_1 & \text{if } (NbOcc[j] < R(C_j).MinOccurs) \\
\gamma_2 & \text{else if } (NbOcc[j] < R(C_j).MaxOccurs) \\
\gamma_3 & \text{else}
\end{cases} \\
\end{array} \right.
$$

where

$$
\gamma_1 = Dist[i - NbOcc[j], j - 1] + \sum_{n=0}^{NbOcc[j] - 1} TED_{\text{Doc}, XGram}(D_{i-n}, C_j) + Cost_{\text{InsTree}}(C_j) \times (R(C_j).MinOccurs - NbOcc[j]) \\
\gamma_2 = Dist[i - NbOcc[j], j - 1] + \sum_{n=0}^{NbOcc[j] - 1} TED_{\text{Doc}, XGram}(D_{i-n}, C_j) \\
\gamma_3 = Dist[i - 1, j - 1] + TED_{\text{Doc}, XGram}(D_i, C_j)
$$

//Condition 1: ConsideringMinOccursconstraint
//Condition 2: ConsideringMaxOccursconstraint
//TraditionalTEDcomputation
Proof. Our goal is to find the minimum cost edit script transforming $D(i)$ into $D(i)'$ to obtain $C(j) \models D(i)'$, given that a grammar sub-tree $C_i \in C(j)$ is required to appear a minimum number of times ($R(C_i)\cdot MinOccurs$) and a maximum number of times ($R(C_i)\cdot MaxOccurs$) in $D(i)'$. This can be computed in three ways:

- Having $Dist[i−1,j]$, we spend $\alpha = Dist[i−1,j] + Cost_{delTree}(D_i)$, deleting D_i from $D(i)$.
- Having $Dist[i−j,1]$, we spend $\beta = Dist[i,j−1] + Cost_{insTree}(C_j) \times R(C_i)\cdot MinOccurs$, inserting sub-tree C_j into $D(i)$ as many times as required by the corresponding $R(C_i)\cdot MinOccurs$ constraint.
- Having $Dist[i−1,j−1]$, we need to account for three alternative cost factors:
 - Having $NbOcc[j]$ occurrences of C_j in $D(i)$, such that $NbOcc[j] \in [R(C_i)\cdot MinOccurs, R(C_i)\cdot MaxOccurs]$ (Condition 2) we compute the edit distance between all sub-trees in $D(i)$ which match C_j, starting from $D_i_NbOcc[j]$ (first match) to D_i (last match):
 $$\gamma_2 = \text{Dist}[i−NbOcc[j]+1] + \sum_{n=0}^{NbOcc[j]+1} TED_{XDoc_XGram(D_i,n,C_j)}$$
 - Having $NbOcc[j] < R(C_i)\cdot MinOccurs$ (Condition 1) we add to the costs of the $NbOcc[j]$ existing occurrences of C_j (i.e., γ_2) the cost of additional sub-tree occurrences required to occur in $D(i)$ in order to fulfill C_j’s $MinOccurs$ constraint: $\gamma_1 = \gamma_2 + Cost_{insTree}[C_j] \times (R(C_i)\cdot MinOccurs − NbOcc[j])$.
 - Otherwise, when $NbOcc[j] > R(C_i)\cdot MaxOccurs$, then we apply the Traditional TED Recurrence factor γ_3, such that every additional C_j occurrence is treated as any regular sub-tree occurrence.

Since these three cases express all possible tree edit paths yielding $Dist[i,j]$, we keep the minimum from these costs. □

Proof description. Our goal is to find the minimum cost edit script transforming partial document tree $D(i)$ into $D(i)'$ to obtain $C(j) \models D(i)'$, considering that a grammar (element) sub-tree $C_i \in C(j)$ is required to appear a minimum number of times ($R(C_i)\cdot MinOccurs$) and a maximum number of times ($R(C_i)\cdot MaxOccurs$) in the transformed partial document tree $D(i)'$ for it to conform to $C(j)$. This can be computed in three ways:

- Having the value $Dist[i−1,j]$ and the cost of (deleting) sub-tree D_i, we need to spend at least $Dist[i−1,j] + Cost_{delTree}(D_i)$ to transform the partial document tree $D(i)$ into $D(i)'$ to obtain $C(j) \models D(i)'$. This carries from the Traditional TED Recurrence.
- Having the value $Dist[i,j−1]$ and the cost of (inserting) sub-tree C_j, we need to spend at least $Dist[i,j−1] + Cost_{insTree}(C_j) \times R(C_i)\cdot MinOccurs$ to transform $D(i)$ into $D(i)'$ to obtain $C(j) \models D(i)'$. This requires inserting sub-tree C_j into $D(i)$, as many times as required by the corresponding $R(C_i)\cdot MinOccurs$ constraint.
- Having the value $Dist[i−1,j−1]$, we need to account for two cost factors: the costs of (i) existing sub-tree occurrences of C_j (sub-trees matching C_j which already appear in the partial document tree) and (ii) remaining sub-tree occurrences of C_j (sub-trees which are still required to appear – which need to be inserted – in the partial document tree) to fulfill C_j’s $MinOccurs$ and $MaxOccurs$’ constraints:

Existing sub-tree occurrences cost: It is only applied when $NbOcc[j] < R(C_i)\cdot MinOccurs$, i.e., when the number of sub-trees matching C_j in the partial document tree, does not yet fulfill $R(C_j)\cdot MinOccurs$ (cf. γ_2). Having $NbOcc[j]$ existing occurrences (exact/approximate match candidates) of sub-tree C_j in partial document tree $D(i)$, the similarity score between each of the (exact/approximate) match candidates on one hand, and C_j on the other hand, need to be computed, in order to identify the overall cost of these existing sub-tree occurrences. To do so, we need to start from $Dist[i−NbOcc[j]+1]$, the distance value at the last position (in the edit distance table) preceding the occurrence of the first document sub-tree match candidate with C_j, i.e., $D_i_NbOcc[j]$, and then spend at least $\sum_{n=0}^{NbOcc[j]+1} TED_{XDoc_XGram(D_i,n,C_j)}$, covering the sum of the tree edit distance costs for comparing grammar sub-tree C_j with all consecutive first-level document sub-trees in $D(i)$ ranging from sub-tree $D_i_NbOcc[j]$ (the first exact/approximate match candidate of grammar sub-tree C_j in the document tree) to D_i (the last exact/approximate match candidate of C_j in the document tree).
Example: Consider computing the edit distance between document tree F and grammar tree C from Fig. 13. Evaluating the c factor at $\text{Dist}[4, 2]$, considering grammar sub-tree C_2, and having $\text{NbOcc}[2] = 3$ (given that 3 possible candidate sub-trees matching C_2 have been identified: F_2, F_3, and F_4) yields: $\text{Dist}[4, 2] = \text{Dist}[4, 2] + \text{Cost}_{\text{Doc}}(F_2, C_2)$ + $\text{Cost}_{\text{Doc}}(F_3, C_2)$ + $\text{Cost}_{\text{Doc}}(F_4, C_2)$ = 0 + 0 + 0 + 1. This means that $C_2 \vdash \{F_2, F_3\}$ such that their occurrences in partial tree $D(3)$ do not entail any additional cost, whereas $\text{C}_j \vdash \text{F}_4$ requiring a transformation of cost = 1 (i.e., the insertion of node e in F_4) for partial document tree $D(4)$ to become valid w.r.t. grammar tree $C(2)$, i.e., $C(2) \vdash F(4)'$. (cf. graphical presentation in Fig. 14c, and more detailed computation examples in the following section).

- **Remaining sub-tree occurrences** cost: It is only applied when $\text{NbOcc}[j] \in [R(C_j).\text{MinOccurs}, R(C_j).\text{MaxOccurs}]$, i.e., when the number of sub-trees matching C_j in the partial document tree, remains within C_j’s constraints margin (cf. γ_j). Here, in addition to the edit distance costs of the $\text{NbOcc}[j]$ existing occurrences (exact/approximate matches) of sub-tree C_j in the partial document tree $D(i)$, we need to account for the cost of sub-tree occurrences (corresponding to C_j) which have not yet been inserted in $D(i)$ but which are required to occur in $D(i)$, to fulfill the MinOccurs constraint associated to C_j, in order to obtain $C_j \vdash D(i)'$. This is mathematically concretized in the edit distance formula by adding: $\text{Cost}_{\text{Intree}}(C_j) \times R(C_j).\text{MinOccurs} - \text{NbOcc}[j])$, covering the cost of inserting sub-tree C_j multiplied by the minimum number of occurrences needed $R(C_j).\text{MinOccurs}$, minus the number of already existing occurrences $\text{NbOcc}[j]$ of exact/approximate matches of C_j in the partial document tree $D(i)$. The remaining sub-tree occurrences factor is (naturally) disregarded when $R(C_j).\text{MinOccurs} = 0$, such that no additional occurrences whatsoever are required in $D(i)$ since $C_j \not\vdash D(i)$.

- **Otherwise**, when the number of sub-trees matching C_j in the partial document sub-tree surpasses C_j’s (maximum) cardinality constraints, i.e., $\text{NbOcc}[j] > R(C_j).\text{MaxOccurs}$, then we simply apply the Traditional TED Recurrence factor (γ_j), such that every additional C_j occurrence is treated as any regular sub-tree occurrence in the partial document sub-tree.

Since the three cases above express all possible tree edit paths following the set of edit operations considered in our approach, consequently we keep in $\text{Dist}[i, j]$ the minimum from the three costs a, β, and γ, i.e., the minimum attainable distance between $D(i)$ and $C(j)$ allowing to transform $D(i)$ into $D(i)'$ such that $C(j) \vdash D(i)'$.

Fig. 14. Sample Extended TED Recurrence (TED+) computations (to simplify, we note TEDXDoc_XGram(A, B) as TED(A, B)).
4.2.3. Integrating TED* in the main algorithm

When utilized in our main TED$_{\text{Doc,XGram}}$ algorithm (Fig. 12), the Extended TED Recurrence (TED*) is recursively called for every pair of sub-trees D_i and C_j, in the document and grammar trees being compared (Fig. 12, lines 11–24). Here, the number of occurrences of document sub-trees evaluated as potential exact/approximate match candidates of grammar sub-tree $C_j \in C$, noted $\text{NbOcc}[j]$, is compared with corresponding $R(C_j).\text{MinOccurs}$ and $R(C_j).\text{MaxOccurs}$ constraints (lines 15 and 17) in order to decide on the tree edit distance recurrence to execute (γ_1, γ_2, or γ_3). Then, the minimum edit distance between partial document tree $D(i)$ and partial grammar tree $C(j)$, highlighting the minimum cost script necessary to transform $D(i)$ into $D(i')$, is kept in the distance matrix $\text{Dist}[i,j]$. Counter $\text{NbOcc}[j]$, keeping track of the number of occurrences of document sub-trees D_i matching each grammar sub-tree C_j, is incremented when processing every D_i, initially considered as a potential new (exact/approximate) match candidate for C_j (line 12). Then, $\text{NbOcc}[j]'s$ new value is preserved whenever the edit distance cost $\text{Dist}[D_i, C_j] = \text{Min}(\alpha, \beta, \gamma) = \gamma$, i.e., whenever the cost of the edit script leading to TED$_{\text{Doc,XGram}}(D_i, C_j)$ (applying the γ factor), is less than those of: (i) deleting D_i (applying the α factor) and (ii) inserting C_j (applying the β factor). This means that the cheapest cost for transforming partial tree $D(i)$ in order to obtain $C(j) \models D(i')$, is through computing TED$_{\text{Doc,XGram}}(D_i, C_j)$ (i.e., through the γ factor), rather than deleting D_i or inserting C_j (applying the α or β factors), which in turn means (following the logic of edit distance) that D_i and C_j are not a confirmed match for C_j. In other words, the potential match candidate D_i is actually a confirmed match for C_j (either an exact match when $\gamma = 0$, or an approximate match $C_j \approx D_i$, when $\gamma \neq 0$). Otherwise, when the minimum distance $\text{Dist}[D_i, C_j] = \text{Min}(\alpha, \beta, \gamma) \neq \gamma$, the $\text{NbOcc}[j]$ is reinitialized (line 25), hence ignoring D_i as a potential match for C_j.

At the end, the algorithm returns the minimum distance between all sub-trees (first-level, second-level, and so on) of the document tree D and grammar tree C (line 28), reflecting the minimum cost script necessary to transform D into D' to obtain $C \models D'$. The minimum distant value is then used to compute XML document/grammar similarity.

4.3. Similarity measure

As indicated previously, we adopt the concept of similarity as the inverse of a distance function (a smaller distance value underlining a higher similarity degree). This minimal distance is computed using our TED$_{\text{Doc,XGram}}$ algorithm, such that our document/grammar similarity measure is defined as follows:

$$\text{Sim}_{\text{Doc,XGram}}(D, C) = \frac{1}{1 + \text{TED}_{\text{Doc,XGram}}(D, C)} \in [0, 1]$$

When the XML grammar is represented as a set of conjunctive grammar trees $G = \{C\}_C$, the maximum similarity (i.e., minimum edit distance) between the XML document tree and the set of conjunctive grammar trees is retained:

$$\text{Sim}_{\text{Doc,XGram}}(D, G) = \max_{C_i \in \{C\}_C} \left\{ \frac{1}{1 + \text{TED}_{\text{Doc,XGram}}(D, C_i)} \right\} \in [0, 1]$$

Our similarity measure in formula (5) is consistent with the formal definition of similarity, as a (semi-) metric function satisfying (in part) the metric properties of Reflexivity, Minimality, Symmetricity and Triangular Inequality (cf. details in Appendix D). Our measure is a semi-metric (and not a full metric) since: (i) it does not allow comparing two grammars (i.e., $\text{Sim}(G_1, G_2)$), nor (ii) using a grammar as the first parameter of the similarity measure ($\text{Sim}(G, D)$) is not allowed, i.e., we cannot transform grammar G in order to obtain $G \models D$. We do it the other way around: transforming D to obtain $G \models D'$. Comparing/transforming grammars is out of the scope of this study.

4.4. Computation examples

4.4.1. TED* computations

Consider the edit distance computations in Fig. 14, Fig. 14a depicts the computation of $\text{Dist}[1, 1]$ between partial document tree $E(1)$ and partial grammar tree $C(1)$. Computing the α factor consists of computing the cost of deleting sub-tree E_1 (consisting of leaf node a), i.e., $\alpha = 1$. Computing the β factor consists in inserting sub-tree C_1 (made of grammar node a) with $R(C_1).\text{MinOccurs} = 0$, hence its cost $= 0$, indicating that C_1 is optional and is not required to appear in the partial document tree $D(1)$ since $C(1) \models D(1)$. Computing the γ factor consists in evaluating the edit distance between document sub-tree E_1, the (only existing) match candidate with grammar sub-tree C_2. Since $\text{NbOcc}[2] = 1 \in R(C_2).\text{MinOccurs} = 0 \cdot R(C_2).\text{MaxOccurs} = 1$, thus γ_2 is applied. This yields cost $= 0$, indicating that E_1 is an exact match of $C_1, C_1 \models E_1$. Hence, $\text{Dist}[1, 1] = \text{Min}(\alpha, \beta, \gamma) = \gamma = 0$, indicating that no changes need to be made to $E(1)$ since $C(1) \models E(1)$.

Similar examples in Fig. 14b and c are discussed in detail in Appendix E. To summarize, the example in Fig. 14b depicts the computation of $\text{Dist}[1, 2]$ between partial document tree $E(1)$ and $C(2)$, where $\text{Dist}[1, 2] = \text{Min}(\alpha, \beta, \gamma) = \gamma = 3$, indicating that the minimum (cost) amount of change required to transform $E(1)$ is to insert an additional occurrence of C_2 in $E(1)$, in order to obtain $C(2) \models E(1)'$. The example in Fig. 14c depicts the computation of $\text{Dist}[4, 2]$ between partial document tree $F(4)$ and partial grammar tree $C(2)$, where $\text{Dist}[4, 2] = \text{Min}(\alpha, \beta, \gamma) = \gamma = 1$, indicating that the minimum (cost) amount of change required to transform $F(4)$ is to insert node e under sub-tree F_4, in order to obtain $C(2) \models F(4)'$.

277
4.4.2. Complete TED_XDoc_XGram matrix computations

Fig. 15 shows the complete edit distance matrixes (with all recurrences) when running our TED_XDoc_XGram algorithm to compare document trees \(D, E, F\) with grammar \(C\) of Fig. 13.

For instance, the first line of the distance matrix in Fig. 15a (likewise in Fig. 15b and c), i.e., \(\text{Dist}[0,0]\), corresponds to the sum of the costs of inserting every node of the grammar tree \(C\). Likewise, the first column, \(\text{Dist}[1,0]\), underlines the sum of the costs of deleting every node of XML tree \(D\). Consequently, the algorithm identifies the combination of tree insertion/deletion operations of minimum cost, following our Extended TED Recurrence, in populating the remainder of the matrix, such as \(\text{TEDXDoc_XGram}(D, C) = \text{Dist}[5,5]\) underlines the final distance value.

The matrix in Fig. 15a shows the edit distance result when comparing document tree \(D\) to grammar tree \(C\), yielding \(\text{TEDXDoc_XGram}(D, C) = 0 \Rightarrow \text{SimXDoc_XGram}(D, C) = 1\) since the document/grammar tree roots match: \(R(D) = R(C).\text{Dist}[0,1] = 0\) and \(\text{Cost}_{\text{upd}}(C_1)\times R(C).\text{MinOccurs} = 0\), underlining that \(C_1\) is optional and is not required to appear in the document tree. \(\text{Dist}[3,2] = \text{Dist}[0,1] + \text{TEDXDoc_XGram}(D_1, C_2) + \text{TEDXDoc_XGram}(D_2, C_2) + \text{TEDXDoc_XGram}(D_3, C_2) = 0\) since \(C_2 \subseteq \{D_1, D_2, D_3\}\), such that \(\text{NbOcc}[2] = R(C_1).\text{MaxOccurs} = 3\) (3 occurrences of \(C_2\) are allowed to appear, and have actually appeared in the document tree). \(\text{Dist}[4,3] = \text{Dist}[3,2] + \text{TEDXDoc_XGram}(D_4, C_3) \equiv \text{Cost}_{\text{upd}}(R(D_4)\times R(C_3)) = 0\) since \(C_3 \subseteq D_4\), having \(R(C_3).\text{MinOccurs} = R(C_3).\text{MaxOccurs} = 1\) (i.e., one and only one occurrence of \(C_3\) is required to appear in the document tree). Hence, no changes need to be made to \(D\) since \(C \subseteq D\).

Fig. 15. Computing edit distance between XML documents \(D, E, F\) and grammar tree \(C\) in Fig. 13.

(a) Comparing document tree \(D\) and grammar tree \(C\).

(b) Comparing document tree \(E\) and grammar tree \(C\).

(c) Comparing document tree \(F\) and grammar tree \(C\).
Similar examples in Fig. 15b and c shows the edit distance result when comparing document trees \(E \) and \(F \) (respectively) with grammar tree \(C \), and are discussed in detail in Appendix E. To summarize Fig. 15b shows \(TED_{\text{XDoc-XGram}}(E, C) = 3 \Rightarrow \text{Sim}_{\text{XDoc-XGram}}(E, C) = 1/(1 + TED_{\text{XDoc-XGram}}(E, C) = 0.25 \Rightarrow |C|/\text{MinOcc}_{C} \), highlighting the cost of inserting one additional occurrence of sub-tree \(C_{2} \) into document tree \(E \), to obtain \(C \models E \). Similarly, Fig. 15a shows \(TED_{\text{XDoc-XGram}}(F, C) = 4 \Rightarrow \text{Sim}_{\text{XDoc-XGram}}(F, C) = 1/(1 + TED_{\text{XDoc-XGram}}(F, C) = 0.2 \Rightarrow |C|/\text{MinOcc}_{C} \), which underlines the costs of (i) inserting node \(e \) in sub-tree \(F_{2} \) and (ii) deleting sub-tree \(F_{3} \) from document tree \(F \), in order to obtain \(C \models F \). This means that \(F \) requires more costly transformations to become valid w.r.t. grammar tree \(C \), and thus is less similar to grammar tree \(C \) in comparison with document tree \(E \).

4.4.3. Running example

To sum up, we present the result of comparing sample XML document \(\text{Paper.xml} \) with XML grammar \(\text{Paper.xsd} \) in Fig. 16 (reported from Figs. 2a and 7c respectively, for ease of presentation). \(\text{Paper.xml} \) is represented as XML document tree \(D \) following our XML data tree model (Fig. 16a), and \(\text{Paper.xsd} \), designated as \(G \), is represented as a set of conjunctive grammar trees \(\{C_{1}, C_{2}, C_{3}\} \). \(TED_{\text{XDoc-XGram}} \) computations between \(D \) and \(\{C_{1}, C_{2}, C_{3}\} \) yield:

- \(TED_{\text{XDoc-XGram}}(D, C_{1}) = TED_{\text{XDoc-XGram}}(D_{2}, C_{1}) + \text{Cost}_{\text{initTree}}(C_{1}) × (R(C_{1}) \cdot \text{MinOccurs} - \text{NbOcc}(3)) = 1 + 3 = 4 \), which comes down to: (i) the cost of transforming \(D_{2} \), as an approximate match candidate of sub-tree \(C_{1} \), in order to obtain \(C_{1} \models D_{2} \), in order to obtain \(C_{1} \models D_{2} \), updating node label Publisher into Author) and (ii) the cost of inserting one additional occurrence of \(C_{1} \), made of nodes Author, FirstName and LastName, i.e., \(\text{Cost}_{\text{initTree}}(C_{1}) = 3 \), since \(D_{2} \) is the only match of \(C_{1} \) in \(D \) (\(\text{NbOcc}(3) = 1 \) whereas the minimum number of occurrences of \(C_{1} \), required to appear in document tree \(D \) is \(R(C_{1}) \cdot \text{MinOccurs} = 2 \), transforming \(D_{2} \) into \(D \) in order to obtain \(C_{1} \models D \).
- \(TED_{\text{XDoc-XGram}}(D, C_{2}) = \text{Cost}_{\text{delTree}}(D_{21}) + \text{Cost}_{\text{delTree}}(D_{22}) = 2 \), which corresponds to the sum of the costs of deleting (sub-tree) nodes of labels FirstName and LastName from document tree \(D \), to obtain \(C_{2} \models D \).
- \(TED_{\text{XDoc-XGram}}(D, C_{3}) = 0 \), underlining that changes need to be made to document \(D \), since we already have \(C_{3} \models D \) (edit distance matrices when comparing \(D \) with \(C_{1}, C_{2}, \) and \(C_{3} \) can be found in Appendix E).

Hence, the structural similarity between document XML document \(\text{Paper.xml} \) and XML grammar \(\text{Paper.xsd} \) is computed as:

\[
\text{Sim}_{\text{XDoc-XGram}}(D, G) = \max_{c \in \{C_{1}, C_{2}, C_{3}\}} \left\{ \frac{1}{1 + TED_{\text{XDoc-XGram}}(D, C_{1})} \right\}
\]

In other words, a maximum similarity value (1% or 100%), indicates that XML document \(\text{Paper.xml} \) is structurally valid w.r.t. grammar \(\text{Paper.xsd} \), and that no transformations need to be applied to the corresponding document tree since it already conforms to the grammar tree representation.

4.5. Complexity analysis

Let \(|D| \) be the cardinality of the XML document tree \(D \) considered, and \(|G| \) the number of nodes (elements/attributes) in the XML grammar, \(N_{G} = |C| \), the number of conjunctive grammars making up the disjunctive normal form of \(G \), and \(|C| \) the cardinality of the largest conjunctive grammar tree corresponding to \(G \). Our XML document and grammar structure comparison approach is of \(O(|D| × |G|) \) time. It simplifies to \(O(|D| × |G|) \) in the typical (practical) case, and \(O(N_{G} × |D| × |G|) \) in the worst case.

4.5.1. Time complexity

Tree Construction: The XML document tree and XML grammar tree construction processes (including algorithm XGram_to_Tree) are of typical linear complexity and simplify to \(O(|D| + |G|) \). Algorithm XGram_to_Tree processes XML grammar simplification rules using a dedicated index tables to monitor each simplification rule (i.e., detecting whether the grammar expression is of the form targeted by a given transformation rule). This proved computationally efficient in practice, requiring typical \(O(|G|) \), since the number of simplification rules – and thus the size of the index tables – is constant). On the other hand, document tree construction requires one single traversal over the document, hence \(O(|D|) \) time.

Tree Edit Operations Costs: Computing document tree and conjunctive grammar tree edit operations’ costs requires \(O(|D| + |G|) \) time: (i) algorithm TOC_{XGram} for computing XML grammar tree edit operations costs is of \(O(|C|) \) time and (ii) Likewise, algorithm TOC_{XDoc} (developed in the Technical Report [73]) for computing document tree operations costs, requires \(O(|D|) \) time.

Core Tree Edit Distance Algorithm: The \(TED_{\text{XDoc-XGram}} \) algorithm (Fig. 12) for computing the edit distance between the XML document tree and conjunctive grammar tree is of worst \(O(|D| × |C|) \) complexity. The algorithm recursively goes through the sub-trees of both XML document and conjunctive grammar trees, combining edit operations so as to identify those of minimal cost. Its main recursive procedure is called once for each pair of sub-trees occurring and the same structural level (depth) in the document and conjunctive grammar trees being compared, thus reflecting a linear dependency on the size of each tree, and thus a quadratic dependency on the sizes of both trees.
XML Document/Grammar Comparison: Algorithms TOC\textsubscript{XGram} and TED\textsubscript{XDoc_XGram} are executed for all conjunctive grammars \(C_i \in \mathcal{C}\) in order to compute overall document/grammar edit distance similarity, thus requiring \(O(NG \times |D| \times |C_i|)\) time. Here, recall that the number of conjunctive grammars \(NG\) resulting from the disjunctive normal form expansion of an input XML grammar \(G\), depends on the number and configurations of \(Or\) (choice) operators in the input grammar expressions. This may generate a proliferation of conjunctive grammars depending on the expressiveness of the grammar declarations. However, in our approach, the XML document tree and each of the conjunctive grammar trees are compared concurrently (i.e., in parallel) using multi-thread processing (cf. algorithm in Fig. 9). Hence, regardless of the (possibly limited) processing capabilities of the computer system being used, the complexity of the edit distance phase is not (theoretically) affected by the number of conjunctive grammars \(NG\), and comes down to \(O(|D| \times |C_i|)\). In addition, most common alternative expressions found in real XML grammars [11,23,38] generate a number of conjunctive grammars linear in the number of \(Or\) operators involved (cf. mathematical analysis is Appendix A). Hence, based on (i) the algorithmic design of our approach (Fig. 9) and (ii) the relatively simple nature of real XML grammar expressions, the overall complexity of our approach, \(O(NG \times |D| \times |C_i|)\), typically simplifies to \(O(|D| \times |G|)\), which in turn simplifies to \(O(|D| \times |G|)\) since \(|C_i|\) is linear in the size of \(|G|\) (cf. Section 3.2).

In the worst case, when the number of conjunctive grammars \(NG\) is explosive (and cannot be even handled using multi-threading), then the term \(NG\) cannot be simplified form the equation, and complexity becomes \(O(NG \times |D| \times |G|)\).

4.5.2. Space complexity

As for memory consumption, our approach requires \(O(|D| + NG \times |C_i|)\) to store the XML document tree and conjunctive XML grammar trees being compared, in addition to \(O(NG \times |D| \times |C_i|)\) space to store corresponding distance matrixes. Yet practically, space complexity simplifies to \(O(|D| + |G|)\) since conjunctive grammar trees consist of references (pointers) to the elements/attributes in the source grammar, and thus require limited space in comparison with the actual document and grammar sizes (even when the child structures of elements in different conjunctive grammar trees are different, represented by their respective pointers). Experimental time and space analyses are provided in Section 5.7.

5. Experimental evaluation

We first start by describing our prototype and experimental scenarios, and then we present and assess empirical results.

5.1. Prototype

We have implemented our XML document/grammar comparison approach in the existing XS3 prototype\(^6\) (XML Structural and Semantic Similarity). Implemented using C#.Net, the XS3 prototype system includes: (i) a parser component verifying the integrity of XML documents and grammars, (ii) a tree representation component, for transforming XML documents and grammars into their tree representations, and (iii) a tree edit distance component for computing document/grammar similarity. An adaptation of the IBM XML documents generator\(^7\) was implemented to produce sets of XML documents and grammars based on specific user input requirements (e.g., a \(MaxRepeats\)\(^8\) variability parameter for document generation, the number of \('And\)/\('Or\) operators and operator positions in synthetic grammars, etc.). In addition, we have implemented an XML document/grammar modification generator. It accepts as input an XML document or an XML grammar, a Modif\textsubscript{Type} value designating the kind of modification to be induced to the document/grammar at hand (i.e., element/attribute insertions, deletions or label updates, cf. Section 5.4), as well as a Modif\textsubscript{Value} value indicating the amount of modifications to be produced w.r.t. document/grammar size (i.e., cardinality).

Built upon the main XS3 components are different modules for similarity evaluation: *One to One*, *One to Many* (comparing one XML document to a set of grammars and vice versa, allowing similarity ranking), and *Set comparison*, (enabling XML document/grammar classification). A detailed description of the prototype system is available online.

5.2. Experimental scenarios

How to experimentally evaluate the quality of an XML similarity method remains a debatable issue, especially in information retrieval. To our knowledge, the definition of standardized XML similarity evaluation metrics remains a hot topic in the INEX evaluation campaigns.\(^9\) While a few similarity evaluation techniques have been proposed in the context of XML document comparison (e.g., inter- and intra-cluster similarity coefficients [30], mis-clustering coefficient [48], and cluster-precision and -recall metrics [26]), and grammar comparison (e.g., overall measure to quantify user effort in grammar matching [27,44]) yet, to our knowledge, none have been proposed for XML document/grammar similarity evaluation; which is probably due to the novelty of the issue.

\(^6\) Available online at http://sigappfr.acm.org/Projects/XS3/.

\(^8\) A greater \(MaxRepeats\) underlines greater size and variability in generating XML documents, when repeatable elements (associated \(\ast, +\) in DTDs, or \(\ast\) in XSDs) are encountered.

\(^9\) http://inex.is.informatik.uni-duisburg.de/.
Hence, in the following, we introduce experimental evaluation methods based on the most common applications of XML document/grammar comparison, i.e., document classification and ranked retrieval. We demonstrate our method’s effectiveness in classifying similar documents w.r.t. predefined grammars in Section 5.3, and ranking relevant XML documents (grammars) w.r.t. their resemblances to the grammars (documents), in Section 5.4. In Section 5.5, we perform a hybrid experimental analysis, combining both document classification and grammar transformation, to assess our method’s ‘intelligent’ (noise resistant) behavior in comparing non-conforming yet related documents/grammars, i.e., given a set of grammars, recognizing documents which are similar but are not written exactly in those grammars. A qualitative comparative study is presented in Section 5.6. Complexity analysis is presented in Section 5.7.

5.3. XML document classification experiments

The scenario adopted in our document classification experiments comprises of a number of heterogeneous XML databases that exchange documents among each other, each database storing and indexing the local documents according to a set of local grammars. Consequently, XML documents introduced in a given database are matched, via an XML structural similarity method, against the local grammars. In such an application, a similarity threshold is identified underlining the minimal degree of similarity required to bind an XML document to a grammar. The XML grammar for which the similarity degree is highest, and above the specified threshold, is selected. Thus, the XML document is accepted as approximately valid for that grammar (the documents are exactly valid when similarity is maximal, i.e., \(\text{Sim}_{\text{XDoc}, \text{XGram}} = 1 \)).

Note that when the similarity score is below the threshold, for all grammars in the XML database, the XML document is considered unclassified and is stored separately.

5.3.1. Evaluation metrics

Owing to the proficient use of their traditional predecessors in classic information retrieval evaluation [43], and their recent exploitation in XML document clustering (e.g., [26]), we adapt the precision metric (\(PR \), highlighting the fraction of relevant selected entities) and the recall metric (\(R \), highlighting the fraction of relevant non-selected entities) in information retrieval to our XML classification scenario, and propose a new method for their usage in order to obtain consistent experimental results. For an extracted class \(K_i \) corresponding to a given grammar \(G_i \):

- \(a_i \) is the number of XML documents in \(K_i \) that indeed correspond to \(G_i \) (correctly classified documents, i.e., those that conform to grammar \(G_i \)),
- \(b_i \) is the number of documents in \(K_i \) that do not correspond to \(G_i \) (misclassified), and
- \(c_i \) is the number of XML documents not in \(K_i \), although they correspond to \(G_i \) (documents that conform to \(G_i \) and that should have been classified in \(K_i \)).

Hence, setting \(n \) as the total number of classes, which corresponds to the total number of grammars considered for the classification task, we have:

\[
\begin{align*}
\text{Precision} & = \frac{a_i}{a_i + b_i} \\
\text{Recall} & = \frac{a_i}{a_i + c_i} \\
\text{Accuracy} & = \frac{a_i + b_i + c_i}{n}
\end{align*}
\]
\[
PR = \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i}, \quad R = \frac{\sum_{i=1}^{n} c_i}{\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} c_i}, \quad F-value = \frac{2 \times PR \times R}{PR + R}.
\]

High precision denotes that the classification task achieved high accuracy grouping together documents that actually correspond to the grammars considered. On the other hand, high recall means that very few XML documents are not in the appropriate class where they should have been. In addition to comparing one approach’s precision improvement to another’s recall, it is also a common practice to consider their harmonic mean: the F-value measure. Hence, as with classic information retrieval, high precision and recall, and thus high F-value, (indicating in our case high classification quality) characterize a good (XML document/grammar) similarity method.

5.3.2. Multi-level classification

In our experiments, we undertook a series of multilevel classification tasks, varying the classification threshold in the [0, 1] interval. In other words, we construct a dendrogram-like structure Fig. 17a) such that:

- For the starting threshold \(s_1 = 0 \), all XML documents appear in all classes.
- For the final classification threshold \(s_n = 1 \) (with \(n \) the number of classification levels, i.e., classification sets in the dendrogram), each class will only contain the XML documents which actually conform (i.e., which are exactly valid with respect) to the grammar identifying the class.
- Intermediate classification sets will be identified for thresholds \(s_i/s_1 < s_i < s_n \).

Then, we compute precision, recall and F-value for each classification set identified in the dendrogram, thus constructing \(PR, R \) and F-value graphs that describe the system’s evolution throughout the classification process.

5.3.3. Experimental results

We conducted experiments on both real and synthetic XML documents to test our XML document/grammar structural comparison method. For real XML data, we utilized the online XML version of the ACM SIGMOD Record,\(^10\) and the University of Wisconsin’s Niagara XML document collection,\(^11\) including a large XML data set extracted from the Internet Movie Database IMDB.\(^12\) We performed two main classification experiments to test the effectiveness of our method in comparing: (i) related XML documents (i.e., documents sharing identical tag names and related structures) and (ii) heterogeneous XML documents (describing different kinds of information, using different structures). The first experiment considers the SIGMOD Record documents, which correspond to three main grammars: OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd,\(^13\) describing scientific publications. The second experiment considers all three SIGMOD Record, Niagara and IMDB data sets, combining heterogeneous XML data describing different kinds of information, ranging over scientific publications, company profiles, personnel descriptions, movie credentials, and actor descriptions. The characteristics of each document collection and corresponding grammar definitions are shown in Table 3. Grammar statistics are shown in Table 5.

We also generated two sets of 1000 XML documents from 20 real-case\(^14\) and synthetic grammars (using the synthetic XML document and XML grammar generators implemented in the X333 prototype). The first set of documents was created with \(\text{MaxRepeats} = 5 \), the second with \(\text{MaxRepeats} = 10 \), the latter set underlining XML documents with greater size and variability (i.e., greater heterogeneity) w.r.t. the former, when optional and repeatable elements are encountered. The characteristics of synthetic XML datasets are summarized in Tables 4 and 5.

Note that grammar statistics in Table 5 fairly concur with the empirical analyses in [11,23,38] highlighting the fact that real-world XML grammars are usually made of simple structural models (e.g., sequence expressions, single element declarations, or basic content models, e.g., \(\text{PCDATA}, \text{String} \), etc.). In other words, few grammar expressions contain alternative declarations, i.e., \(\text{Or} \) operators (e.g., less than 7% of all grammar expressions surveyed in [11], and less than 16% of those surveyed in [23], contain \(\text{Or} \) operators – cf. 0 for preliminary statistics).

In addition, note that all real and synthetic grammars considered in our experiments are fairly different and do not produce identical documents. In other words, we make certain that a given document cannot conform to two grammars simultaneously, so as to prevent any confusion in computing the precision and recall metrics. Precision and recall graphs are presented in Fig. 17. One can clearly realize that recall \((R) \) is always equal to 1. This reflects the fact that our XML document/grammar comparison approach constantly identifies, in the grammar classes, the XML documents that actually conform to the grammars considered (i.e., documents having \(\text{SimXML}_\text{XGram} = 1 \)) regardless of the classification threshold as well as the nature of the document collection (related and/or heterogeneous). On the other hand, precision \((PR) \), and consequently F-value (note that F-value follows PR in this experiment, since R is always equal to 1) gradually increases toward 1, while varying the classification threshold from 0 to 1:

\(^{10}\) Available at http://www.acm.org/sigmod/xml.
\(^{11}\) Available at http://www.cs.wisc.edu/niagara/.
\(^{12}\) XML data extracted from http://www.imdb.com/ using a dedicated wrapper generator\(^2\).
\(^{13}\) We were able to find only one XML file conforming to SigmodRecord.dtd: SigmodRecord.xml. However, due to its relatively large size (479 KB) w.r.t. the XML documents corresponding to the other grammars (12 KB of average size per document), we carefully decomposed SigmodRecord.xml to several documents, creating a set of documents conforming to SigmodRecord.dtd.
\(^{14}\) From http://www.xmlfiles.com and http://www.w3schools.com.
Fig. 17. XML document classification: dendrogram, and PR, R, F-value graphs. To produce changes to XML documents/grammars (cf. Fig. 18a), we utilize our prototype's modification generator.
– When the classification threshold is equal to 0, all documents in the XML repository are considered in each and every class corresponding to the grammars at hand (Fig. 17a, initial level). That is underlined by minimum Precision. Then, as the classification threshold increases, inconsistent documents are gradually filtered from the XML grammar classes, ultimately yielding classes that only encompass documents conforming to the considered grammars (cf. Fig. 17a, final level).

In summary, Precision and F-value results in Fig. 17 show that our method yields high classification quality with both related and heterogeneous document collections, obtaining optimal classes at a very early stage of the multilevel classification process (with thresholds <0.5).

5.4. Similarity ranking experiments

In addition to XML document classification, we ran a series of experiments to evaluate the ranking capabilities of our document/grammar comparison method.

5.4.1. Experimental scenario

The approach consists in gradually transforming real XML documents/grammars, and consequently evaluating how closely the obtained similarity results correspond to the induced changes. Here, we exploit two complementary criteria for ranking evaluation: (i) an internal criterion, consisting of the amount of modification (transformation) in documents/grammars and (ii) an external criterion, consisting of user predefined rankings. On one hand, we consider as an internal evaluation criterion: the correspondence between the amount of changes and document/grammar similarity values (i.e., similarity decreasing proportionally with the increase in changes, and vice versa), such that a straight correspondence would underline high ranking quality. On the other hand, we also exploit user-predefined rankings, necessary to highlight the user’s perception of document/grammar similarity w.r.t. document/grammar modifications.

To produce changes to XML documents/grammars (cf. Fig. 18a), we utilize our prototype’s modification generator:

Table 3 Characteristics of SIGMOD Record, Niagara, and IMBD document sets.

<table>
<thead>
<tr>
<th>Grammars (SIGMOD)</th>
<th>N# of Docs</th>
<th>Avg node depth (per doc)</th>
<th>N# of nodes (per gram)</th>
<th>Avg N# of nodes (per doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrdinaryIssuePage</td>
<td>30</td>
<td>5.49</td>
<td>23</td>
<td>262.81</td>
</tr>
<tr>
<td>ProceedingsPage</td>
<td>47</td>
<td>3.67</td>
<td>31</td>
<td>382.72</td>
</tr>
<tr>
<td>SigmodRecord</td>
<td>27</td>
<td>5.77</td>
<td>14</td>
<td>542.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grammars (Niagara)</th>
<th>N# of Docs</th>
<th>Avg node depth (per doc)</th>
<th>N# of nodes (per gram)</th>
<th>Avg N# of nodes (per doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>141</td>
<td>2.57</td>
<td>12</td>
<td>381.25</td>
</tr>
<tr>
<td>Personnel</td>
<td>20</td>
<td>2.63</td>
<td>14</td>
<td>38.35</td>
</tr>
<tr>
<td>Club</td>
<td>11</td>
<td>2.19</td>
<td>13</td>
<td>259.09</td>
</tr>
<tr>
<td>Bib</td>
<td>15</td>
<td>3.04</td>
<td>14</td>
<td>130.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grammars (IMBD)</th>
<th>N# of Docs</th>
<th>Avg node depth (per doc)</th>
<th>N# of nodes (per gram)</th>
<th>Avg N# of nodes (per doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movies</td>
<td>300</td>
<td>3.31</td>
<td>12</td>
<td>53.71</td>
</tr>
<tr>
<td>Actors</td>
<td>300</td>
<td>3.40</td>
<td>9</td>
<td>120.25</td>
</tr>
</tbody>
</table>

* Note that all DTD grammars were transformed into XSD definitions, replacing DTD cardinality constraints (namely: ?, *, +) with their more expressive XSD counterparts (i.e., MinOccurs and MaxOccurs).

Table 4 Characteristics of synthetic document sets.

<table>
<thead>
<tr>
<th>Document set</th>
<th>N# of grammars</th>
<th>Number of documents</th>
<th>N# of documents (per gram)</th>
<th>Average node depth (per doc)</th>
<th>Average number of nodes (per doc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxRepeats = 5</td>
<td>20</td>
<td>1000</td>
<td>50</td>
<td>3.1</td>
<td>15.4768</td>
</tr>
<tr>
<td>MaxRepeats = 10</td>
<td>20</td>
<td>1000</td>
<td>50</td>
<td>3.68</td>
<td>36.9133</td>
</tr>
</tbody>
</table>

Table 5 The percentage and number of structure model expressions in both sets of real and synthetic grammars.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Real grammars</td>
<td>19.10% (51)</td>
<td>1.12% (3)</td>
<td>1.87% (5)</td>
<td>14.98% (40)</td>
<td>62.92% (168)</td>
</tr>
<tr>
<td>Synthetic grammars</td>
<td>5.59% (8)</td>
<td>6.99% (10)</td>
<td>9.79% (14)</td>
<td>10.48% (15)</td>
<td>67.13% (96)</td>
</tr>
</tbody>
</table>
Detecting and measuring changes (modifications) in XML documents.

Fig. 18. Detecting and measuring changes (modifications) in XML documents.

- For the starting phase of the transformation process, the modification threshold $\text{Modif}\%$ is set to 0, underlining the original document/grammar structure.
- For the final phase, $\text{Modif}\% = 100$. The amount of changes in the resulting modified document/grammar at hand amounts to 100% of its original size.
- Intermediate transformation phases correspond to $0 < \text{Modif}\% < 100$.

In addition, for each similarity ranking experiment, the modified documents/grammars were manually evaluated, identifying corresponding user-relevant rankings. Thirty graduate students were involved in the experiments. Each subject was given a set of initially conforming documents/grammars and their transformed (modified) versions, and was asked to rank the transformed documents/grammars w.r.t. the original versions (assigning scores ranging from 0 to 1, such as A = Conforming, B = Very Similar, ..., F = Least similar). Manual answers were consequently correlated against the system generated ones in order to identify the statistical dependence between system generated similarity scores and the user's perception of similarity.

5.4.2. Experimental results

Our experiments can be grouped in two categories: (i) detecting changes induced in an XML document, w.r.t. a reference grammar and (ii) detecting changes produced in an XML grammar, w.r.t. a valid reference document. Due to space limitations, we selected meaningful changes, which are described as follows.

5.4.2.1. Detecting changes in XML documents. Similarly to our classification experiments, we utilized XML data from the online XML version of the ACM SIGMOD Record. Among the various experiments conducted, we present the results obtained when modifying documents Ord_234.xml, Pro_171_2.xml and Sigmod_11.xml, evaluating their similarities w.r.t. each of their corresponding user-relevant rankings. Thirty graduate students were involved in the experiments. Each subject was asked to rank the transformed documents/grammars w.r.t. the original versions (assigning scores ranging from 0 to 1, such as A = Conforming, B = Very Similar, ..., F = Least similar). Manual answers were consequently correlated against the system generated ones in order to identify the statistical dependence between system generated similarity scores and the user's perception of similarity.

5.4.2. Detecting and measuring changes (modifications) in XML documents.

Fig. 18. Detecting and measuring changes (modifications) in XML documents.

- For the starting phase of the transformation process, the modification threshold $\text{Modif}\%$ is set to 0, underlining the original document/grammar structure.
- For the final phase, $\text{Modif}\% = 100$. The amount of changes in the resulting modified document/grammar at hand amounts to 100% of its original size.
- Intermediate transformation phases correspond to $0 < \text{Modif}\% < 100$.

In addition, for each similarity ranking experiment, the modified documents/grammars were manually evaluated, identifying corresponding user-relevant rankings. Thirty graduate students were involved in the experiments. Each subject was given a set of initially conforming documents/grammars and their transformed (modified) versions, and was asked to rank the transformed documents/grammars w.r.t. the original versions (assigning scores ranging from A to F, such as A = Conforming, B = Very Similar, ..., F = Least similar). Manual answers were consequently correlated against the system generated ones in order to identify the statistical dependence between system generated similarity scores and the user's perception of similarity.

5.4.2. Experimental results

Our experiments can be grouped in two categories: (i) detecting changes induced in an XML document, w.r.t. a reference grammar and (ii) detecting changes produced in an XML grammar, w.r.t. a valid reference document. Due to space limitations, we selected meaningful changes, which are described as follows.

5.4.2.1. Detecting changes in XML documents. Similarly to our classification experiments, we utilized XML data from the online XML version of the ACM SIGMOD Record. Among the various experiments conducted, we present the results obtained when modifying documents Ord_234.xml, Pro_171_2.xml and Sigmod_11.xml, evaluating their similarities w.r.t. each of their corre-
responding grammars respectively. Graphs in Fig. 18b shows the average similarity values obtained when testing each type of modification operation, considering the different modifications described in the previous section. Results show that:

i. Similarity varies linearly w.r.t. the modifications induced via the update operation, going from 1 (0% updates) to 0 (100% updates, i.e., when all document nodes have been relabeled).

ii. Similarity varies linearly w.r.t. the modifications induced via the insertion operation, going from 1(0% insertions) to \(\approx 0.5\) (100% insertions, indicating that a structure, which size is equal to that of the original document, has been inserted under the document root node).

iii. The case of the deletion modification operation is special, in that similarity values are not perfectly linear w.r.t. the amount of modifications, and sometimes even increase with the increase of the amount of deletions (which might seem counter-intuitive). That is due to the presence of optional and repeatable elements in the reference grammar, which are sometimes better satisfied (i.e., higher similarities are obtained) after deleting certain elements in the documents. This explains the increase in similarity values in the final stages of the modification process, i.e., at thresholds \(\geq 80\%\) (grammar roots encompassing optional siblings such that the deletion of their document counterparts, along with their sub-trees, positively affects the similarity evaluation process).

In addition to document modification, we also conducted a set of experiments to detect the changes induced in XML grammars. We particularly modified grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd (of the online version of the ACM SIGMOD Record), comparing them to documents Ord_234.xml, Pro_172_2.xml and Sigmod_11.xml respectively. Similarity graphs are similar to those in Fig. 18b, highlighting a straightforward correspondence between similarity and modification levels. Graphs are omitted here (and can be found in [73]).

5.4.2.2. User rankings. In addition to system generated results, we conducted manual (user) rankings to identify the correspondence between: (i) the user’s perception of similarity and (ii) system-generated similarity scores, in detecting changes in documents/grammars. Similarity graphs corresponding to each of the charts in Fig. 18b, are shown in Fig. 19.

Here, user rankings (i.e., A, B, C, ... , F) were transformed into numerical values so as to be comparable to system generated scores, such as: \(A = 100\%\) (the document conforms to the grammar), \(B = 80\%\) (high similarity), \(C = 60\%\), \(D = 40\%\), \(E = 20\%\), and \(F = 0\%\) similarity (the document and grammar seem completely different to the user). Average correlation scores for each kind of document modification (document node update, insertion, and deletion) in Fig. 19 are shown in Table 6a. Results confirm the relevance of system generated scores w.r.t. the users’ perception of similarity: correlation is >75%, on average, for all kinds of document modifications.

Similarly to the document modification experiments, manual user rankings conducted w.r.t. grammar modification experiments reveal a straightforward correlation with system generated similarity scores. Similarity graphs are akin to those presented in Fig. 19 and thus are omitted here (they can be found in [73]). Average correlation scores for each kind of grammar modification (grammar node update, insertion, and deletion) are shown in Table 6b. Results confirm the relevance of system generated scores w.r.t. the users’ perception of similarity: correlation is >85%, on average, for all kinds of grammar modifications.

To sum up, experimental results underline our method’s effectiveness in accurately discerning modified documents and/or grammars w.r.t. their original versions. Results show a close correspondence between (i) the amount of modifications in documents/grammars, (ii) system-generated similarity levels, and (iii) user-generated similarity rankings, and thus reflect our approach’s efficiency in accurately comparing and ranking documents/grammars based on their resemblances/differences, in accordance with the user’s perception of similarity.

5.5. Evaluating intelligent behavior: comparing non-conforming documents and grammars

In addition, we evaluate our method’s quality in intelligent behavior (noise resistance), i.e., its ability to identify (disregard) documents which are similar (different) to the reference grammars, such that none of the documents actually conforms to any of the grammars. This corresponds to the most practical case on the Web, where the system user/administrator does not have prior knowledge about the XML documents scattered online, and would like to identify those which approximately validate (most likely correspond to) her predefined grammars.

5.5.1. Experimental scenario

To simulate the process of comparing non-conforming documents and grammars, we combine both grammar transformation (modification) and document classification methods. Considering an XML document collection with a set of documents (e.g., \(D_1\) and \(D_2\)) conforming to predefined reference grammars (e.g., \(G_1\) and \(G_2\)), we first deliberately introduce certain amounts of modifications in the grammars (inserting, deleting and/or relabeling certain amounts of grammar nodes, as described in the experimental scenario of Section 5.4.4). Subsequently, we compare the XML documents with the modified grammars (\(G_1'\) and \(G_2'\)), performing XML classification (as described in the experimental scenario of Section 5.3). In other words, given a set of modified grammars, we attempt to identify those documents which are similar to the grammars, given that the documents are not written exactly in those grammars (e.g., our objective is to effectively classify \(D_1\) under \(G_1\), and \(D_1\) under \(G_1'\), since they are probably similar, despite the fact that neither documents were written for those grammars, but rather conform to their original versions: \(G_1\) and \(G_2\)).
Comparing user and system similarity scores when gradually modifying Ord_234.xml.

Comparing user and system similarity scores when gradually modifying Ord_172.xml.

Comparing user and system similarity scores when gradually modifying Ord_172.xml.

Fig. 19. Similarity graphs contrasting system and user-generated similarity scores when comparing XML documents Ord_234.xml, Pro_171_2.xml and Sigmod_11.xml, w.r.t. XML grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd.

Table 6
Statistical dependency: Pearson Correlation Coeff. (PCC) between system and user-generated similarity rankings.

<table>
<thead>
<tr>
<th></th>
<th>Update</th>
<th>Insertion</th>
<th>Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ord_234.xml</td>
<td>0.9529</td>
<td>0.6962</td>
<td>0.7678</td>
</tr>
<tr>
<td>Pro_172_2.xml</td>
<td>0.9891</td>
<td>0.8832</td>
<td>0.4689</td>
</tr>
<tr>
<td>Sigmod_11.xml</td>
<td>0.9891</td>
<td>0.8233</td>
<td>0.5869</td>
</tr>
</tbody>
</table>

a. PCC with document modification experiments

b. PCC with grammar modification experiments

OrdinaryIssuePage 0.9435 0.9217 0.8575
ProceedingsPage 0.9058 0.8706 0.8992
SigmodRecord 0.8659 0.7679 0.7991
Classification metrics are adapted from Section 5.3.1 as follows. Given an original grammar G_i, its modified version G'_i, and an extracted class K_i corresponding to the modified grammar G'_i:

- a_i is the number of XML documents in K_i that indeed conform to the original grammar G_i. These are the documents which are most probably similar to the current modified version G'_i.
- b_i is the number of documents in K_i that did not originally conform/correspond to G_i. In other words, these documents are less likely to be similar to G'_i, and
- c_i is the number of XML documents not in K_i, although they conform to the original grammar G_i. In other words, these documents are probably similar to the modified grammar G'_i and should have been classified in K_i.

Consequently, precision, recall and f-value are computed following a_i, b_i, and c_i, using formula (6) in Section 5.3.1.

5.5.2. Experimental results

We consider the real XML data sets described in Table 3 (i.e., SIGMOD, Niagara, and IMBD). Each of the corresponding grammars is modified with increasing transformation thresholds, ranging from 0% (original grammars), to 20%, 40%, 60% and 80% w.r.t. the original grammars. We combine all three transformation operations: insertion, deletion, and relabeling (cf. Section 5.4) in inducing modifications. Our experiments are based on multilevel classification, similarly to the experiments in Section 5.3.

The central difference here is that since none of the documents actually conforms to the class reference grammars, all XML documents will be eventually filtered out of the predefined classes (whereas in the experiments of Section 5.3, the classes always contain the XML documents conforming to their reference grammars). A sample dendrogram structure depicting the classification of non-conforming XML documents and grammars is depicted in Fig. 20a. Average precision, recall and f-value results are depicted in Fig. 20b–d respectively.

On one hand, when multilevel classification is applied on conforming documents/grammars (cf. Section 5.3), recall is constantly equal to 1, indicating that all documents are correctly identified in the ‘correct’ classes (i.e., classes corresponding to their conforming grammars, having $\text{Sim}_{\text{XDoc},\text{XGram}} = 1$). However, when classifying non-conforming documents/grammars (Fig. 20), recall varies from 1 (maximum value, where all documents are identified in the correct classes, corresponding to the initial classification step, Fig. 20a) to 0 (minimum value, where all documents are misclassified, attained in the final classification step). That is due to the fact that $\text{Sim}_{\text{XDoc},\text{XGram}}$ is always $\neq 1$ in this case, since none of the documents conforms to the grammars.

On the other hand, results in Fig. 20a–c shows that precision, recall and f-value respectively decrease while increasing the grammar modification threshold. In other words, classification accuracy steadily decreases when the resemblance/relatedness levels between the documents and the grammars decrease (simulated, in our experiments, by varying/increasing the grammar modification threshold). Note that we do not show the results of $\text{Modif} = 100\%$ in Fig. 20, since it underlines the case where all grammars are completely different from all documents, which contradicts the idea of using grammars as document classification references to compute precision and recall.

To sum up, while exact (Boolean) XML document validation methods (cf. State of the Art in Section 6.2) could be used to perform document classification in the case of conforming XML documents/grammars (identifying which documents conform to which grammars), such methods become obsolete (i.e., completely ineffective) when non-conforming documents/grammars come to play. In such a context, an ‘intelligent’ approximate similarity evaluation method (such as the one proposed in this study) becomes crucial.

Note that while our current experimental study conveniently exploits XML grammars as references to evaluate result quality (computing precision and recall accordingly), we are currently building a larger XML benchmark better suited to the experimental tasks, aimed at making use of blind testing. Here, we were unable to utilize the current INEX16 data set in our experiments since it targets XML textual similarity (i.e., similarity between element/attribute values made of long text fields) which is out of the scope of this study (here, as mentioned earlier, we focus on XML structure, i.e., document/grammar element/attribute tag names and their structural positions, and disregard values).

5.6. Comparative study

An experimental study, comparing the effectiveness of our XML document/grammar comparison method with existing approaches, would have been interesting, and would have allowed us to further validate our method. Nonetheless, most related studies in the literature (cf. background in Section 6) do not precisely tackle the issue of ranked document/grammar comparison, but rather handle (Boolean) document validation, or transformation/correction. Other methods, e.g., [32,75], perform some sort of ranked similarity evaluation, yet are based on a specific premise: that the possible distortions between the documents/grammars are known in advance, which makes it difficult to define a common experimental scenario. Thus, we currently settle for a qualitative comparison, depicting the main characteristics, commonalities and differences between our approach and related studies. We also compare our method with its most pertinent predecessor: DTDMatch in [9,10].

16 http://inex.is.informatik.uni-duisburg.de/.
which to our knowledge is the main existing work to actually allow (knowledge-free) ranked document/grammar similarity evaluation.

5.6.1. Qualitative analysis

Table 7 summarizes the main differences between our method and related approaches. In short, our approach is: (i) fine-grained, extending the concept of tree edit distance (as an efficient technique for comparing XML-based structured data [17]) to detect and identify the structural similarities and disparities between XML documents and grammars, taking into account

Fig. 20. Classification results obtained with non-conforming documents/grammars.

17 We do not empirically compare our method with DTDMatch since the authors do not provide the detailed algorithm/code of the method.
the most common XML grammar constraints, namely MaxOccurs and MinOccurs, repeatable expressions and recursive declarations, which are partly disregarded in the main existing methods, e.g., [7,10,32,57], (ii) producing a ranked similarity result, i.e., a similarity value \(v \in [0,1] \) interval, in comparison with existing Boolean (validation) methods, e.g., [7,8,49], which only provide a Boolean output, (iii) capable of identifying (in the course of computing the similarity value) an edit script transforming the XML document into one conforming to the XML grammar, similarly to XML transformation methods [57] (note that in our current paper, we do not provide the additional algorithms needed for extracting edit scripts. We report this issue to an upcoming dedicated study).

5.6.2. Comparison with DTDMatch

In the following, we compare our approach with its most pertinent predecessor: DTDMatch [9,10].

1. Both DTDMatch and our approach model XML documents and XML grammars as labeled trees. DTDMatch follows an intentional approach in producing one compact tree representation per grammar \(G \), representing the set of rules constraining the content of each element in the grammar (i.e., describing the language \(L(G) \) of the grammar), while we follow a semi-intentional approach such that each grammar \(G \) is represented as the set of conjunctive trees \(\{C_i\}_C \), where the grammar's expressiveness (language) is distributed among its constituent conjunctive grammars, \(L(G) = \bigcup_{C \in \{C_i\}_C} L(C_i) \) (cf. Fig. 21a).

2. While DTDMatch’s grammar tree representation is more compact, nonetheless our grammar tree representation is more similar (in its structural properties) to XML document tree representation, as it was designed for this specific purpose in order to simplify the document/grammar tree comparison process.

3. DTDMatch only considers (context-free) DTD grammars whereas our approach processes (context-sensitive) XSD grammars, with more expressive power related to MinOccurs and MaxOccurs constraints.

4. DTDMatch does not discuss the case of recursive declarations, whereas strong linear recursive declarations are handled in our grammar tree representation model.

5. The DTDMatch algorithm consists of mapping functions which allow to identify: (i) elements appearing both in the document and in the DTD (common elements), (ii) elements appearing in the document but not in the DTD (plus elements), (iii) and elements appearing in the DTD but not in the document (minus elements), assigning different weights to each group of elements to tune the similarity measure following the user’s needs. Our approach assigns no such weights. Nonethe-

<table>
<thead>
<tr>
<th>Approach</th>
<th>Performs document validation</th>
<th>Generates edit script</th>
<th>Computes similarity value</th>
<th>Considers element constraints</th>
<th>Considers repeatable expressions</th>
<th>Considers recursive declarations</th>
<th>Dedicated to XML grammars</th>
<th>Complexity level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segoufin and Vianu [49]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (DTD)</td>
<td>(O(\text{Exp}(</td>
</tr>
<tr>
<td>Barbosa et al. [8]a</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(</td>
</tr>
<tr>
<td>Balmin et al. [7]b</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(</td>
</tr>
<tr>
<td>Bouchou et al. [15]</td>
<td>✓</td>
<td>Partial</td>
<td>✓</td>
<td>‘And’ only(^b)</td>
<td>×</td>
<td>✓</td>
<td>✓ (DTD/ XSD)</td>
<td>(\text{Exp}(\text{MaxDeg}(</td>
</tr>
<tr>
<td>Suzuki [57]</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(\text{Exp}(</td>
</tr>
<tr>
<td>Xing [79]b</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(</td>
</tr>
<tr>
<td>Grahne and Thomo [32]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(</td>
</tr>
<tr>
<td>Thomo et al. [50,75]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(</td>
</tr>
<tr>
<td>Bertino et al. [9,10]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (DTD/ XSD)</td>
<td>(O(</td>
</tr>
</tbody>
</table>

\(|D| \): cardinality of the XML document.

\(|G| \): cardinality of XML grammar.

\(|A_G| \): number of states in the automaton describing the data-grammar.

\(|N| \): cardinality of semi-structured document.

\(|P| \): number of states in the distortion transducer.

\(K \): number or allowable transformation operations.

\(I_m \): maximum node fan-out in document tree \(D \)

\(N_G \): number of conjunctive grammars representing \(G \)

\(^a\) Note that some studies, such as [7,8,79], support arbitrary regular expressions as production rules in the grammars. Nonetheless, [7,79] do not discuss repeatable expressions, while [78] do not mention recursive declarations.

\(^b\) Considers repeatable sequence expressions only (i.e., expressions connected via the And operator) and disregard repeatable alternative expressions (connected via the Or operator).
less, by post-processing the edit script describing the transformations applied on a document tree so that it becomes valid w.r.t. the grammar tree, such (common, plus, and minus) element mapping can be identified (e.g., such an approach is developed in [70], in the context of XML grammar tree matching).

6. Fig. 21.

The DTDMatch algorithm can produce wrong matches when a certain assumption holds: in the declaration of an element, two sub-elements with the same tag are forbidden (e.g., declaration <ELEMENT root(b, b, c)> is not allowed since b appears twice). Following our algorithm, wrong matches can also be obtained when grammar transformation Rule 1 is applied (in simplifying grammar expressions), \((A_y^v \cap A_x^u) \rightarrow A_y^v \cap A_x^u\) since it does not verify the ISP (Information Structure Preserving) property, and thus might produce transformed grammar expressions that do not preserve the same expressiveness (language) of their original counterparts.

8. The DTDMatch algorithm considers tag similarity, i.e., handling the possibility that tags might be syntactically different by with semantically similar meanings. This issue is not discussed in our current study, and is reported to a future extension of this work. This can be performed through the investigation of alternative tree operations cost models (varying costs w.r.t. the semantic relatedness between document and grammar node labels given a semantic reference such as Wordnet [45], Wikipedia [84], or Google [37]), similarly to the studies in [63, 66, 70].

In short, our approach builds on DTDMatch in different aspects, attempting to handle more expressive XSD constraints, and produced an improved method. Note that we are currently conducting a case study on a large set of real DTD and XSD grammars (mainly acquired from survey in [11, 23, 38]) in order to estimate empirical usage probabilities concerning the different kinds of XML grammar declarations (namely MinOccurs and MaxOccurs, repeatable expressions, multiple identical sub-elements, and recursive declarations) found in real-world grammars. This would help us better evaluate the performance levels of our approach in comparison with its most relevant predecessor(s) in terms of: the percentages of correct grammar expression matches, wrong matches, exact validation ratio, approximate validation ratio, etc., considering the usage probabilities of grammar expressions involved (Fig. 21b provides a glimpse on our preliminary usage probability estimates).
5.7. Timing and space analysis

Timing experiments were carried out on a Dell Precision system with an Intel 2.53 GHz processor and 4 GB RAM. In Section 4.5, we have shown that the complexity of our approach is of $O(|S| + |G| + (N_C \times |S| \times |C_G|))$ time, and simplifies to typical quadratic $O(|S| \times |G|)$ time, w.r.t. the sizes of the XML document and XML grammar being compared, and worst case $O(N_C \times |S| \times |G|)$ considering the number of conjunctive grammars involved.

We start by verifying our approach’s quadratic dependency on the combined XML document and grammar sizes, i.e., $O(|S| \times |G|)$, which equally underlines a linear dependency on each of the document and grammar sizes. Fig. 22a (left graph) shows that the time to identify the structural similarity between XML document trees and conjunctive XML grammar trees of various sizes grows in an almost linear fashion with tree size.

Second, we varied the number of Or operators in the grammar expressions, in order to deliberately vary the number of potential conjunctive grammars (N_C) and study its effect on overall complexity. We considered different configurations, using: alternative expressions (of the form $(A \lor B \lor C \ldots)$) and mixed expressions (of the form $(A \lor B, C \lor D, \ldots)$). Fig. 22a (right graph) shows the worst case time results (mainly obtained when using mixed expressions). The time curve remains mostly linear w.r.t. tree size even when the ‘Or’ operator comes to play, and only starts to grow faster with XML grammar size when the number of concatenated Or expressions (e.g., expressions of the form $(A \lor B), (C \lor D) \ldots$) surpasses 16 (i.e., yielding more than 80 conjunctive grammar trees per single XML grammar). However, note that such a huge number of mixed Or expressions is unlikely to appear in real XML grammars [11,23,38] (around 12.65% of grammar expressions combine And and Or operators, cf. Fig. 21b – node 10).

A mathematical analysis regarding the variation of the number of conjunctive grammars (N_C) w.r.t. different configurations of Or operators is provided in Appendix A. Results concur with Fig. 22a (right graph), showing that the most common alternative expressions generate a number of conjunctive grammars linear in the number of Or operators, while certain specific cases (of usually mixed: And–Or expressions) yield polynomial and/or exponential N_C.

Fig. 22. Time and space results.
Similarly to time complexity, memory usage results in Fig. 22b show that our approach is polynomial in the combined size of the XML document and grammar trees being compared. It is almost linear in the size of each of the XML document and conjunctive grammar trees (Fig. 22b – left graph), and becomes slightly quadratic w.r.t. grammar size when ‘Or’ operators come to play (ranging from 2 to 20 alternative – ‘Or’ – expressions per grammar, cf. Fig. 22b – right graph). Recall that conjunctive grammar trees consist of references (pointers) to the elements/attributes in the source grammar, and thus require limited space in comparison with the actual document and grammar sizes (cf. complexity analysis in Section 4.5.2). This underlines the limited increase in space (in comparison with a greater increase in time, as shown in Fig. 22a), even with a large increase of up to 20 alternative expressions per grammar.

6. State of the art

In the following, we briefly review the literature on XML document/grammar comparison (a detailed review has been published in [62]). We also briefly discuss our own research activities related to the problem, in order to better highlight the contributions of this paper. The interested reader can also refer to [4,17,69] for reviews and comparative studies concerning XML document comparison, and [29,51] for comprehensive reviews on the state of art in XML grammar matching, which are also related to the hybrid task of document/grammar comparison.

Comparing XML documents with XML grammars has been explored in several domains. Various methods have been proposed for validating XML documents against XML grammars [7,8,14,22,36,49]. Methods dedicated to XML document-to-grammar transformation and correction have been investigated in [15,20,57]. Yet, to our knowledge, the main methods (different from ours) to address the issue of document/grammar similarity evaluation, i.e., producing a similarity score (allowing ranked similarity results), are provided in [32,75,9,10].

6.1. Approximate pattern matching with VLDC

An intuitive XML document/grammar comparison solution could be explored in terms of approximate matching with the presence of Variable Length Don’t Cares (VLDC). A VLDC symbol (e.g., Æ) in a string pattern may substitute for zero or more symbols in the string [3,39]. Approximate VLDC string matching means that, after the best possible substitutions have been made, the pattern still does not match the data string and thus a matching distance is computed. For example, “comp Æ ng” matches “commuting” with distance 1 (i.e., the cost of removing the “p” form “comp Æ ng” and having the “Æ” substitute for “mmut”). The VLDC problem has been generalized for trees [81], introducing VLDC substitutions for paths or sub-trees. Yet, VLDC symbols are different from operators XML grammars operators: VLDC symbols can replace any string (w.r.t. string matching) or sub-tree (w.r.t. tree matching) whereas the XML grammar operators specify constraints on the occurrence of a particular node (and consequently the sub-tree rooted at that node). For instance, the DTD operator “?” associated with a given element dummy? designates that the node entitled dummy (and not any other) can appear 0 or 1 time. The same applies for all XML grammar operators.

6.2. XML document/grammar validation

XML document validation w.r.t. XML grammars has recently gained attention, as one of the aspects of XML data management [7,8,14,22,36,49]. Here, XML grammars are generally viewed as context-free (DTD-like) regular tree grammars [58]. Thus, verifying if an XML document D conforms to XML grammar G comes down to checking whether the document tree is included in the language defined by the grammar, i.e., if D ∈ L(G). The standard procedure for testing membership in a formal language is to simulate the automaton that accepts the language on the input strings [34]. Hence, XML validation methods, e.g., [7,8,14,49], have investigated different variations to extend automaton-based techniques to deal with the special case of XML regular tree grammars and XML document trees. In general, the validation is performed in \(O(|D| \times \log(|G|))\) time, where \(|D|\) and \(|G|\) designate respectively the sizes of the XML document and XML grammar. The authors in [49] show that the construction of a standard automaton for (streaming) XML validation requires exponential time in the size of the XML grammar, when the latter encompasses recursive declarations. Note that methods for XML document validation generate a Boolean result indicating whether the XML document is valid or not w.r.t. the grammar. They do not produce a (ranked) similarity score.

6.3. XML document transformation and correction

Methods for identifying the edit script transforming a given XML document, to another document conforming to a given DTD grammar, have been proposed in [57,58,79,80]. The approach in [57] builds a special graph structure G, based on the XML document tree D, underlining all possible transformation operations applicable to D (i.e., node insertion, deletion and update). The algorithm goes through graph G, and verifies which paths have sequences of labels that satisfy the DTD regular expressions. This is achieved via dedicated NFAs (Non-deterministic Finite Automatons). The proposed method addresses simple DTDs, and does not consider XSD MinOccurs and MaxOccurs operators, nor does it discuss the special cases of repeatable and recursive expressions. The authors show that their approach is polynomial on document and grammar
expression sizes when the cost of an operation on a node only depends on the node label itself, and that it becomes non-polynomial (exponential) otherwise, highlighting a strongly NP-Complete decision problem. No experimental evaluation is provided. Another approach to XML document/grammar transformation is provided in [79,80]. It introduces a tree edit distance method to identify the set of operations transforming the XML document to one conforming to the grammar. However, the author simplifies DTD definitions into data-guide like structures (simulated via hedge automatons [46]), omitting all cardinality and alternativeness constraint operators. The proposed method is of \(O(|D| \times |G| \times \log(|G|)) \) time, where \(|G| \) is the size of the grammar and \(|D| \) is the size of the XML document tree.

A problem comparable to that of document-to-grammar transformation is that of document-to-grammar correction [6,15,58]. The scenario considered here is that of dynamic XML documents which are modified and updated frequently, underlining the need to continuously test their conformance w.r.t. the corresponding grammars. The authors in [6,15] propose to correct those sub-trees, in the modified XML document, where validation fails w.r.t. a given DTD grammar. The methods exploit automatons and tree edit distance to identify the set of possible sub-tree corrections, such that their distances from the original sub-tree are within a given threshold. The approach is shown exponential in the size of document node fan-out (maximum node degree), and has been exploited to incrementally validate XML integrity constraints defined as XML functional dependencies [13]. In [54,58] the authors extend document-to-grammar (DTD) correction to deal with more expressive XML schemas, represented as simple type tree grammars (where the left-hand side of a production rule may be surrounded by context information, consisting of terminal symbols), representing repairs as sequences of edit operations to alter XML trees. The authors in [52,53] investigate user-defined XML document adaptations, i.e., sequences of document transformation operations intended to adapt documents valid for an original grammar \(G \) to a new grammar \(G' \). The objective is to check whether a user-proposed document adaptation is guaranteed to produce a document valid for the new grammar, in order to avoid the usually expensive revalidation of documents upon grammar modification. Transformation operations are expressed as sequences of XQuery update primitives, automatically inferred from the original grammar using a Hedge automaton and a set of rules describing each operation type (e.g. rename node, insert as first child node, insert as last child node, etc.). Type inclusion is then used as a conformance test w.r.t. the types of updates extracted from the updated schema \(G' \).

While the methods in [6,15,57,58,79] produce transformation and correction scripts, they do not however address the issue of XML document/grammar similarity.

6.4. XML document/grammar similarity

Very few approaches have been developed to measure the structural similarity between XML documents and grammars. The main methods are provided by Thomo et al. [32,50,75] and Bertino et al. [9,10].

In [32], the authors address the problem of determining whether semi-structured data conform to a given data-guide, in the context of approximate querying. The authors define a distortion transducer through which the data-guide can be distorted via elementary transformations (e.g., node insertions, deletions and updates) and then test if the database conforms to the resulting data-guide. The same technique is exploited to compare semi-structured data with a given query. The approach in [32] is developed for generic semi-structured data and data-guides, rather than for XML documents, and does not consider any of the XML grammar repeatability and alternativeness constraints. In a more recent study [50,75], the authors propose a similar approach toward approximate XML validation. Dedicated pushdown transducers are designed to modify XML grammars by a predefined tolerable number of transformation operations (e.g., node insertions, deletions and updates) and then test if the XML documents conform to the resulting grammar. Both methods require typical polynomial time with simple (data-guide like) grammar structures, e.g., \(O(K \times N^2 \times |P|) \) where \(K \) is the number of allowable transformation operations, \(N \) is the size of the alphabet (XML document), and \(|P| \) the number of states in the distortion transducer \(P \) [50,75]. However, the authors show that complexity becomes exponential when considering intrinsic XML grammar properties, namely repeatable elements. They do not discuss optional, alternative or recursive declarations.

Note that methods in [32,50,75] are based on the assumption that the possible derivations from the original grammar specification are pre-designed by the user through the transducer (pre-processing phase). While this might be feasible in specific applications such as the fast validation of streaming (homogeneous) XML, yet, it is a limitation to the general problem of XML document/grammar comparison (namely approximate validation of heterogeneous XML data) where no prior knowledge of the possible deviations is known in advance.

To our knowledge, the main approach that specifically addresses the general problem of XML document/grammar similarity, particularly DTDs, was proposed by Bertino et al. in [9,10]. Here, XML documents and DTDs are modeled as labeled trees, with additional nodes for representing cardinality and alternativeness operators (i.e., \(*, +, \text{And}, \text{Or} \)). The proposed algorithm (originally proposed in [10], and formalized in [9]) exploits dedicated measures to consider the level (i.e. depth) in which the elements occur in the hierarchical structure of the XML and DTD tree representations, as well as element complexity (i.e. the cardinality of the sub-tree rooted at the element) when computing similarity values. The algorithm relies on the identification and evaluation of: (i) elements appearing both in the document and in the DTD (common elements), (ii) elements appearing in the document but not in the DTD (plus elements), (iii) elements appearing in the DTD but not in the document (minus elements). Different weights can be assigned to each group of elements to tune the similarity measure following the user’s needs. The proposed algorithm is of typical polynomial time complexity \(O(I^2 \times (|D| + |G|)) \) where \(|D| \) and \(|G| \) underline XML document tree and DTD tree cardinalities respectively, and \(I \) the maximum node fan-out in the
XML document tree), especially when a certain assumption holds: in the declaration of an element, two sub-elements with the same tag are forbidden (e.g., declaration <ELEMENT root (b, b, c)> is not allowed since b appears twice). The authors discuss that when the above assumption does not hold, the algorithm can become of worst case exponential complexity, and can produce wrong matches between document and DTD elements (i.e., the minimality of the similarity is no longer guaranteed).

6.5. Our own research activities related to XML similarity

Part of our research activities have been focused around the study of XML similarity, developing measures for comparing (i) XML documents, (ii) XML grammars, and (iii) XML documents and grammars, and their application in specific real-world scenarios. We have largely focused on XML structure, and have recently tackled XML content (specifically in the context of RSS merging and SOAP multicasting). Various results have been accomplished, mainly:

- Extending the tree edit distance algorithm in [48] so as to detect structural similarities and repetitions amongst XML sub-trees [65], and XML leaf nodes [67], previously unaddressed in existing approaches.
- Integrating semantics (i.e., considering the meanings of XML labels, via semantic networks such as WordNet [45]) in the structural comparison of XML documents [64]. An improved method, considering XML sub-tree structural and semantic similarities, has been recently published in [66].
- Developing a fine-grained method for XML grammar comparison [63], considering element semantic and syntactic similarities, cardinality and alternativeness constraints, as well as data-types and ordering. An extended study with detailed theoretical and experimental analyses has been recently proposed in [70].
- Quantifying the similarity and identifying the relations (i.e., inclusion, intersection, disjointness, and equality) among XML element content values, particularly among RSS items [60], developed toward RSS merging [59].
- Developing a filter-differencing framework for SOAP multicasting, identifying the common pattern and differences between SOAP messages, modeled as XML trees, to multicast similar messages together [71,72].

Our only proposal aimed at dealing with XML document/grammar comparison was presented in [68], in addition to a review paper published in [62]. Similarly to our current study, the approach in [68] is based on the concept of tree edit distance as a more effective solution to comparing XML trees. The approach targets DTD grammars, and considers basic DTD cardinality and alternativeness constraints (i.e., ?, +, *, And, Or). Hence, it must be viewed as the groundwork for the general approach in this paper. Here, we aim to consider more expressive XSD operators (e.g., MinOccurs and MaxOccurs), including repeatable expressions and recursive declarations (omitted in [68]).

6.6. Discussion

To sum up, various methods have been proposed for XML document/grammar validation, e.g., [7,8,36] and transformation/correction, e.g., [6,15,58]. Yet, most approaches do not address the issue of document/grammar similarity evaluation and do not produce a similarity score. Those few methods developed for XML document/grammar similarity are either generic (disregarding most grammar constraints) and intended to consider pre-designed derivations [32,75], or developed for the DTD (context-free) grammar language and do not consider XSD (context-sensitive) structure and constraints which are more complex and expressive (e.g., MinOccurs and MaxOccurs) [9,10].

Some methods in the context of XML grammar matching [40,56] have proposed to reduce (sacrifice) XML grammar expressiveness to simplify the comparison task, using simplification rules to eliminate repeatable and alternative expressions (e.g., transforming the Or operator into an And operator: \((A \lor B) \rightarrow (A, B)\), brute-force flattening of repeatable expressions such as: \((A, B) \triangleright (A, B, A, B)\), etc.). While such rules seem practical in simplifying XML grammars, yet, they reduce grammar expressiveness, which in turn yields erroneous similarity results, and thus not in line with our goal of providing a fine-grained method to XML document/grammar comparison.

7. Conclusion

In this paper, we propose a structure-based similarity approach for comparing XML documents and XML grammars (DTDs and/or XSDs), performing approximate structure XML validation. The proposed approach has several applications, including document classification, transformation, and XML selective dissemination (e.g., user profiles being represented as grammars against which the documents will be matched). Based on the tree edit distance concept, our approach takes into account the most common XML grammar operators that designate constraints on the existence, repeatability and alternativeness of XML elements/attributes, namely MinOccurs, MaxOccurs. It produces similarity values in \([0, 1]\) interval (in comparison to Boolean output obtained with classic XML validation methods). Also, an edit script can be generated from the edit distance computations which can describe the changes required to transform an XML document into one conforming to the grammar (which is central for document transformation and correction applications). Note that our XML grammar tree model considers complex declarations, including: (i) repeatable sequence expressions, (ii) repeatable alternative expressions, and (iii) recursive expressions, which have been previously disregarded in most existing approaches, e.g., [9,32,57]. In addition, it is not limited
to context-free (DTD-like) grammar declarations: where the definition of an element is unique and independent of its position in the grammar; but can be used with context-sensitive (XSD-based) declarations: where identically labeled elements can have multiple definitions in different contexts in the grammar. Our theoretical and experimental results showed that our approach yields accurate structural document/grammar similarity results (characterized by high structural document classification and ranking quality).

We are currently extending our approach to consider, not only the structural properties of XML documents and grammars, but also the semantic similarities between XML element/attribute node labels (given a reference semantic information source such as WordNet [45], Wikipedia [84], or Google [37]), through the investigation of alternative tree edit operations cost models similarly to the studies in [63,66,70]. In the near future, we plan to extend our method to consider XML element/attribute tag names as well information contents (element/attribute values). By adding additional constraints on the data content of elements/attributes, grammars could be exploited as content-and-structure queries, taking into account the structure of XML data in the search process, and returning ranked answers as in information retrieval (IR). This would also give rise to more elaborate content models, such elements defining hyper-links (IDREFS or XLink), which would require dedicated graph-based comparison functions. Another direction is the extension of our grammar tree model to handle unordered XML document trees, i.e., XML trees where only ancestor relations are considered to be significant in the XML structure, which might be more suitable for various database applications such as document clustering and pattern discovery [24,41]. Note that combining database (DB) structural “binary answer” XML search (e.g., XML-QL and XQuery) and information retrieval query result ranking (e.g., approximate XML validation), is a prominent trend in both DB and IR research.

Acknowledgements

This work is supported in part by: the Research Support Foundation of the State of Sao Paulo (FAPESP Post-doc Fellowship Nº 2010/00330-2), STIC AmSud project Geo-Climate XMine co-funded by the French Ministry of Foreign Affairs, National Brazilian Consul for Scientific and Technological Development – CNPq, CAPES – Brazil, the CEDRE research collaboration program, project AO 2011 “Easy Search and Partitioning of Visual Multimedia Data Repositories” (funded by the French National Center for Scientific Research – CNRS, and the Lebanese CNRS), and by the ACM French Chapter on Applied Computing SIGAPP.fr.

Appendix A. Mathematical analysis regarding the Disjunctive Normal Form (DNF)

In the following, we consider three common configurations of ‘Or’ operator expressions: (i) concatenated, (ii) encapsulated, and (iii) mixed; which usually appear in real XML grammars (based on empirical analyses in [11,23,38], as well as the grammars utilized in our own experiments, described in Section 5 of the main paper). In the following, we show on one hand that with concatenated and/or encapsulated configurations, the number of conjunctive declarations resulting from the DNF representation of a grammar expression is linear in the number of ‘Or’ operators involved, denoted \(Nb(Or) \). On the other hand, we show that mixed declarations might induce, in certain specific cases, an exponential increase in the number of conjunctive grammars.

A.1. Grammars with concatenated ‘Or’ expressions

These correspond to grammars containing alternative expressions where ‘Or’ operators appear exclusively at the same level within the same grammar expression: \(\langle !ELEMENT A(B(C(D|)...)\rangle \) such as ‘A’ is the root node, or an inner node in the grammar, and ‘B’, ‘C’, ‘D’, . . . are either: (i) single node declaration, (ii) empty node declarations, or (iii) sequence expressions (i.e., expressions of elements connected via the ‘And’ operators). Given an XML grammar \(G \) consisting solely of concatenated ‘Or’ expressions (i.e., yielding the maximum \(Nb(Or) \) possible following this configuration), and based on the inductive mathematical reasoning in Table A.1, the maximum number of conjunctive grammars \(N_G \) resulting from the DNF representation of \(G, DNF(G) = \{ C \} \), is equal to:

Table A.1

XML grammars made of concatenated ‘Or’ operators, such as the number of ‘Or’ operators, and consequently the number of conjunctive grammars \(N_G \), are maximized.

Grammar expressions	\(Nb(Or) \)	\(G	\)	\(N_G \)	\(C_G	\)	
\(< ELEMENT root (a	b) >\)	1	3	2	2				
\(< ELEMENT root (a	b	c) >\)	2	4	3	2			
\(< ELEMENT root (a	b	c	d) >\)	3	5	4	2		
\(< ELEMENT root (a	b	c	d	e) >\)	4	6	5	2	
\(< ELEMENT root (a	b	c	d	e	f) >\)	5	7	6	2
Recursively.	\(G_{i-2}\)	\(G_i\)	\(G_{i-1}\)	2					
Table A.2
Grammars made of encapsulated ‘Or’ operators, such as the number of ‘Or’ operators, and consequently the number of conjunctive grammars N_C, are maximized.

| Grammar expressions | $N_b(Or)$ | $|G|$ | N_C | $|G|_C$ |
|---------------------|-----------|-----|-------|-------|
| `<ELEMENT root (a | b)>` | 1 | 3 | 2 | 2 |
| `<ELEMENT root (a | b)>` | 2 | 5 | 3 | 3 |
| `<ELEMENT root (a | b)>` | 3 | 7 | 4 | 4 |
| `<ELEMENT root (a | b)>` | 4 | 9 | 5 | 5 |
| `<ELEMENT root (a | b)>` | 5 | 11 | 6 | 6 |
| ... | **Gi=1** | **|G|** | **Gi<=1** | **Gi<=1** |

$N_C = N_b(Or) + 1$ such as $N_C = |G| - 1$ and $N_b(Or) = |G| - 2$ \[(i)\]

A.2. Grammars with encapsulated ‘Or’ expressions

These are grammars containing alternative expressions where ‘Or’ operators are encapsulated in each other, such as no two ‘Or’ operators appear at the same structural level. Such grammars are of the form: \(\langle !ELEMENT A(B|C) \rangle \langle !ELEMENT B(E|F) \rangle \langle !ELEMENT E(H|I) \rangle \cdots\) where ‘A’ is the root node or an inner node, and ‘B’, ‘C’, ‘E’, … are either (i) single node declarations, (ii) empty node declarations, or (iii) sequence expressions (i.e., expressions of elements connected via the ‘And’ operators). Thus, given an XML grammar G consisting solely of encapsulated ‘Or’ expressions (i.e., yielding the maximum $N_b(Or)$ possible following this configuration), and based on the inductive mathematical reasoning in Table A.2, the maximum number of conjunctive grammars N_C resulting from $DNF(G) = \{C\}_C$, is equal to:

$N_C = N_b(Or) + 1$ such as $N_C = \frac{|G| + 1}{2}$ and $N_b(Or) = \frac{|G| - 1}{2}$ \[(ii)\]

A.3. Grammars with mixed expressions

These are grammars made of expressions containing both sequence (And) and alternative (Or) expressions. Here, 2 main configurations can occur, which we identify as: (i) And–Or expressions and (ii) Or–And expressions.

- **And–Or** expressions – These are of the form $E = \langle A_1 | A_2 | \cdots | A_n \rangle$ where each B_i consists of a sequence expression, denoted $B_i = (B_{i1}, B_{i2}, \ldots, B_{im})$. These come down to the cases of concatenated and/or encapsulated ‘Or’ expressions described above, since sequence expressions are not affected via the DNF representation and can be processed as single node declarations.

- **Or–And** expressions – these are of the form $E = \langle A_1, A_2, \ldots, A_n \rangle$ where each A_i consists of an alternative expression, denoted $A_i = (B_{i1}, B_{i2}, \ldots, B_{im})$. Here, one can realize that the number of conjunctive expressions resulting from the DNF representation of E is exponential in the number of A_i expressions in E (i.e., the cardinality of E w.r.t. the main ‘And’ sequence operator):

$N_E = |A_i|^E = m^n$ such as $N_b(Or) = |E| \times |\langle A_i \rangle - 1| = n \times (m - 1)$ \[(iii)\]

Consequently, a grammar G containing multiple mixed expressions E_i, transformed into its DNF representation, would inherently yield an exponential increase in the number of conjunctive grammars N_C, (in comparison with the linear dependencies described in the concatenated and encapsulated cases discussed above).

To summarize, the number of conjunctive grammars N_C resulting from the DNF representation of an XML grammar G remains linear in the number of ‘Or’ operators involved in G, in many practical cases including: concatenated ‘Or’ expressions, encapsulated ‘Or’ expressions, and mixed And–Or expressions. However, an exponential increase in N_C can occur in the case of mixed Or–And expressions. Here, note that mixed expressions (including both And–Or and Or–And declarations) only cover 12.65% of grammar expressions used in real XML grammars [11,23,38].

Appendix B. XML Grammar to Tree algorithm

The pseudo-code of our algorithm for transforming an XML grammar into its tree representation, entitled $XGram_{to_Tree}$, is shown in Fig. B.1. Given an XML grammar G, an XML document tree D to be compared with the grammar, and our set of transformation rules (R) (cf. Tables 1 and 2), the algorithm first runs the grammar G through the general transformation rules (rules 1–3, cf. Table 1) so as to flatten repeatable expressions, eliminating all cardinality constraints associated to the And and Or operators (cf. Fig. B.1, line 1, the rules being recursively applied on the input grammar G until no further transformations are possible). Then, the algorithm runs the resulting (flattened) grammar G_i though the one-to-one transformation rules
(rules 2+, 3+, and 4, cf. Table 2), handling MaxOccurs = 'unbounded' and recursive expressions w.r.t. the XML document tree at hand (line 2). Subsequently, the algorithm transforms the resulting grammar G_2 into its disjunctive normal form, $DNF(G_2) = \{C_2\}$ (line 3) and then represents each resulting conjunctive XML grammar as a single rooted ordered labeled tree (lines 4–8).

Appendix C. Definitions of edit operations used in our TEDXDoc\textsubscript{XGram} approach

Definition 1 (Insert Leaf Node). Let T be a tree with a node $p \in N_T$, and let T_1, \ldots, T_m be the first level sub-trees corresponding to node p (i.e., sub-trees rooted at the children of node p). Given a node x not belonging to T, $x \notin T$, $Ins(x, i, p, \ell)$ is a node insertion operation applied to T, inserting x as the ith leaf child of p. In the transformed tree T', node p will have $T_1, \ldots, T_{i-1}, x, T_{i+1}, \ldots, T_m$, as its first level sub-trees, with ℓ the label of inserted leaf node x.

Definition 2 (Delete Leaf Node). Given a leaf node x in tree T, i.e., $x \in N_T$ such as $x.Deg = 0$, $Del(x)$ is a node deletion operation applied to T, yielding T' where node p will have first level sub-trees $T_1, \ldots, T_{i-1}, T_{i+1}, \ldots, T_m$.

Definition 3 (Update Node (Label)). Given a node x in tree T, $x \in N_T$, and a label λ. $Upd(x, \lambda)$ is a node (label) update operation applied to x resulting in T' which is identical to T except that in T_r, x bears λ as its label. The update operation could be also formulated as follows: $Upd(x, y)$ where y, λ denotes the new label to be assumed by x.

Definition 4 (Insert Tree). Let T be a tree, with a node $p \in N_T$, and let T_1, \ldots, T_m be the first level sub-trees of node p. Given a tree A not belonging to T, $InsTree(A, i, p)$ is a tree insertion operation applied to T, inserting A as the ith sub-tree of p. In the transformed tree T', node p will have $T_1, \ldots, T_{i-1}, A, T_{i+1}, \ldots, T_m$ as its first level sub-trees.

Definition 5 (Delete Tree). Let T be a tree with a node $p \in N_T$, having a tree A as the ith first level sub-tree of p, $DelTree(A)$ is a tree deletion operation applied to T, yielding T' where node p will have first level sub-trees $T_1, \ldots, T_{i-1}, T_{i+1}, \ldots, T_m$.

Appendix D. Properties of our XML document/grammar similarity measure

D.1. Tree edit distance minimality property

Given an XML tree D and a conjunctive grammar tree C, one can transform D into a document tree conforming to C using any of an infinite number of edit scripts (e.g., repeatedly inserting and deleting the same node and/or sub-tree, etc.). Such edit scripts are obviously meaningless in the context of our study since we aim to identify the minimum cost edit script: that applies the fewer and minimum cost operations transforming D into a document tree valid w.r.t. C. In other words, if we consider $L(C)$ to be the set of document trees generated by grammar C (i.e., the language of grammar C), then we aim to
identifying the minimum distance (cost) necessary to transform document tree D into any document tree $D' \in L(C)$. Hence, the distance minimality property carries immediately from our definition of tree edit distance (cf. TED_{XDoc_XGram} in Fig. 12) and serves as the main directive in defining our TED_{XDoc_XGram} algorithm.

D.2. Similarity measure metric properties

Our similarity measure in formula 5 is consistent with the formal definition of similarity, as a (semi-) metric function satisfying (in part) the metric properties of Reflexivity, Minimality, Symmetry and Triangular Inequality. Here, note that while XML documents and XML grammars are different in nature (i.e., XML documents underline data instances, whereas XML grammars underline data type), yet an XML document tree, following our model, comes down to a conjunctive XML grammar tree free of cardinality constraints operators (i.e., when all elements of the grammar tree are associated default constraints $MinOccurs = MaxOccurs = 1$, which are equivalent to null constraints and can be omitted). This allowed us to verify the following metric properties:

i. $Sim_{XDoc_XGram}(D, G) \in [0, 1]$.

ii. $Sim_{XDoc_XGram}(D, G) = 1 \Rightarrow$ XML document tree D conforms to grammar $G(G \models D)$.

iii. $Sim_{XDoc_XGram}(D, D) = 1$ \Rightarrow Reflexivity.

iv. $Sim_{XDoc_XGram}(D_1, D_2) \leq Sim_{XDoc_XGram}(D, D) \Rightarrow$ Minimality.

v. $Sim_{XDoc_XGram}(D_1, D_2) = Sim_{XDoc_XGram}(D_2, D_1) \Rightarrow$ Symmetry.

vi. $Sim_{XDoc_XGram}(D_1, D_3) \geq Sim_{XDoc_XGram}(D_1, D_2) \times Sim_{XDoc_XGram}(D_2, D_3) \Rightarrow$ Triangular inequality, (i.e., $TED_{XDoc_XGram}(D_1, D_3) \leq TED_{XDoc_XGram}(D_1, D_2) + TED_{XDoc_XGram}(D_2, D_3)$).

Note that our measure is a semi-metric (and not a full metric) since: (i) it does not allow comparing two grammars (i.e., $Sim(G_1, G_2)$), nor (ii) using a grammar as the first parameter of the similarity measure ($Sim(G, D)$ is not allowed, i.e., we cannot transform grammar G so that it includes in its language document D. We do it the other way around: transforming D so that it becomes $D \models C$). Comparing/transfoming grammars is out of the scope of this study.

Appendix E. Detailed computation examples

E.1. Extended TED recurrence (TED^*) computations

Consider the example in Fig. 14, Fig. 14a depicts the computation of $Dist[1,1]$ between partial document tree $E(1)$ and partial grammar tree $C(1)$ and has been described in detail in the main paper (in short, no changes need to be made to $E(1)$ since $C(1) \models E(1)$). Fig. 14b depicts the computation of $Dist[1,2]$ between partial document tree $E(1)$ and $C(2)$. Computing the α factor consists of deleting sub-tree E_1 (consisting of leaf node a), which cost = 1. Computing the β factor consists in inserting 2 occurrences of sub-tree C_2 in order to fulfill the corresponding $R(C_2), MinOccurs = 2$ constraint in the transformed partial document tree $E(1)$ to obtain $C(2) \models E(1)'$. Computing the γ factor consists in evaluating the edit distance between sub-tree E_2, the only missing (match) candidate with grammar sub-tree C_2 ($NbOcc[2] = 1$). Nonetheless, $ NbOcc[2] < R(C_2), MinOccurs = 2$ shows that one more occurrence of C_2 is required to appear in $E(1)'$ to obtain $C(2) = E(1)'$. Thus, γ is applied to account for the remaining sub-tree occurrence, yielding $\gamma = 3$, which is the cost of inserting an occurrence of C_2 into $E(1)'$. Consequently, $Dist[1,2] = Min(\alpha, \beta, \gamma) = \gamma = 3$, indicating that the minimum (cost) amount of change required to transform $E(1)$ in order to obtain $C(2) = E(1)'$ is to insert an additional occurrence of C_2 in $E(1)'$.

Similarly, consider Fig. 14c which depicts the computation of $Dist[4,2]$ between partial document tree $F(4)$ and partial grammar tree $C(2)$. Computing the α factor consists in deleting sub-tree F_4, which cost = 2. Computing the β factor consists in inserting 2 occurrences of sub-tree C_2, in order to fulfill the corresponding $R(C_2), MinOccurs = 2$ constraint. Computing the γ factor consists in evaluating the edit distance between document sub-trees F_2, F_3, F_4 on one hand, which are the consecutive first-level sub-trees in $F(4)$ which could match C_2, and grammar sub-tree C_2 on the other hand. Here, $NbOcc[2] = 3 \in R(C_2), MinOccurs = 2, R(C_2), MaxOccurs = 3$, thus γ is applied. This yields cost = 1, indicating that $C_2 = \{F_2, F_3\}$ (inducing no edit distance cost, $TED_{XDoc_XGram}(F_2, C_2) + TED_{XDoc_XGram}(F_3, C_2) = 0$), while $C_2_1 = F_4$, requiring the inserting of node $e \{TED_{XDoc_XGram}(F_4, C_2) = Cost_{InsTree}(C_2) = 1\}$ to obtain $C_2 \models F_4'$. Then, $Dist[4,2] = Min(\alpha, \beta, \gamma) = \gamma = 1$, indicating that the minimum (cost) amount of change required to transform $F(4)$ in order to obtain $C(2) = F(4)'$, is to insert node e under sub-tree F_4.

E.2. Complete TED_{XDoc_XGram} matrix computations

Consider the edit distance matrices in Fig. 15, depicting all recurrences when running the TED_{XDoc_XGram} algorithm to compare document trees D, E, F with grammar C of Fig. 13.

\footnote{In practice, we will hardly ever obtain $ TED_{XDoc_XGram} = \infty$. Hence, Sim_{XDoc_XGram} values will hardly ever reach 0. Note that alternative similarity formulas, such as $Sim_{XDoc_XGram}(D, G) = 1 - (TED_{XDoc_XGram}(D, G)/(D + G))$ could be used to bring similarity values to a limited range, where $Sim_{XDoc_XGram} = 00$ is more practically attainable. Yet, such a formula would violate the triangular inequality metric property, which is why it is disregarded in this approach.
Fig. 14a depicts the computation of $TED_{Xdoc-Xgram}(D, C)$ and has been discussed in detail in the main paper (in short, $TED_{Xdoc-Xgram}(D, C) = 0 \Rightarrow Sim_{Xdoc-Xgram}(D, C) = 1/(1 + TED_{Xdoc-Xgram}(D, C)) = 1 \Rightarrow C \models D$).

Fig. 14b depicts $TED_{Xdoc-Xgram}(E, C) = 3 \Rightarrow Sim_{Xdoc-Xgram}(E, C) = 1/(1 + TED_{Xdoc-Xgram}(E, C)) = 0.25 \Rightarrow C \models_{0.25} E$, i.e., document tree E approximately validates C with a similarity score $= 0.25$. Here, $Dist([0, 0] = 0$ since the document and grammar tree roots match. $Dist([1, 1] = Dist([0, 0] + TED_{Xdoc-Xgram}(E_1, C_1) \equiv Cost_{upd}(R(E_1), R(C_1)) = 0$ since $C_1 \models D_1$. $Dist([2, 2] = Dist([1, 1] + TED_{Xdoc-Xgram}(E_2, C_2) + Cost_{insTree}(C_2) \times (R(C_2)).MinOccurs - NbOcc(2)) = 0 + 0 + 3 = 3$, since D_2 is the only (exact) match of C_2 in E (thus we need to consider the cost of inserting an additional occurrence of C_2, i.e., $Cost_{insTree}(C_2) = 3$, in order to obtain $C(2) \models D(2)$). $Dist([3, 3] = Dist([2, 2] + TED_{Xdoc-Xgram}(E_3, C_3) = Cost_{upd}(R(E_3), R(C_3)) = 3 + 3$ since $C_3 \models E_3$ (given that one occurrence of C_3 is required, and has actually appeared in the document tree). To sum up, $TED_{Xdoc-Xgram}(E, C) = 3 \Rightarrow C \models_{0.25} E$ highlights the cost of inserting one additional occurrence of sub-tree C_2 into document tree E, to obtain $C \models E$.

Fig. 14c depicts $TED_{Xdoc-Xgram}(F, C) = 4 \Rightarrow Sim_{Xdoc-Xgram}(F, C) = 1/(1 + TED_{Xdoc-Xgram}(F, C)) = 0.25 \Rightarrow C \models_{0.25} E$. Here, $Dist([0, 0] = 0$ since the document and grammar tree roots match. $Dist([1, 1] = Dist([0, 0] + TED_{Xdoc-Xgram}(F_1, C_1) \equiv Cost_{del}(R(F_1), R(C_1)) = 0$ since $C_1 \models F_1$. $Dist([4, 2] = Dist([1, 1] + TED_{Xdoc-Xgram}(F_2, C_2) + TED_{Xdoc-Xgram}(F_3, C_2) + TED_{Xdoc-Xgram}(F_4, C_2) = 0 + 0 + 0 + 1 = 1$ since $C_2 \models \{F_2, F_3\}$ whereas $C_2 \models F_4$ requiring the insertion of node e ($TED_{Xdoc-Xgram}(F_4, C_2) = Cost_{insTree}(C_2(2)) = 1$ in order to obtain $C_2 \models F_4$ (having $NbOcc(2) = 0$). $MaxOccurs = 3$, i.e., 3 occurrences of C_2 are allowed to appear, and have actually appeared in the document tree). $Dist([5, 2] = Dist([4, 2] + Cost_{delTree}(5) = 1 + 3 = 4$, considering the cost of deleting sub-tree F_5, since F_5 is considering as an additional yet unwanted occurrence of sub-tree C_2 ($NbOcc(2) = 4 > R(C_1).MaxOccurs = 3$). $Dist([6, 3] = Dist([5, 2] + TED_{Xdoc-Xgram}(F_6, C_3) = 4$, where $TED_{Xdoc-Xgram}(F_6, C_3) = Cost_{del}(R(F_6), R(C_1)) = 0$ since $C_3 \models F_6$. To sum up, $TED_{Xdoc-Xgram}(F, C) = 4 \Rightarrow C \models_{0.25} E$ underlines the costs of (i) inserting node e in sub-tree F_4, and (ii) deleting subtree F_3 from document tree F, in order to obtain $C \models F$. This means that F requires more costly transformations conform to grammar tree C in comparison with document tree E.

In addition, consider a simple variation of grammar C where sub-tree C_3‘s root node is assigned $R(C_2).MaxOccurs = \infty$ instead of $MaxOccurs = 3$ (all other nodes remaining the same). In this case, the edit distance table in Fig. 14c would remain the same except for: $Dist([5, 2] = Dist([4, 2] + TED_{Xdoc-Xgram}(F_5, C_2) = 1 + 1 = 2$, where: $Dist([4, 2] = 1$ underlines the cost of inserting node e under sub-tree F_4 in order to obtain $C_2 \models F_4$ (similarly to the previous example), and $TED_{Xdoc-Xgram}(F_5, C_2) \equiv Cost_{del}(R(F_5), R(C_2)) = 1$, transforming node label f into e in sub-tree F_5 ($TED_{Xdoc-Xgram}(F_5, C_2) = \infty$).

Table E.1

Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree C_i.

<table>
<thead>
<tr>
<th>$R(D)$ (Paper)</th>
<th>C_1 (Category, MinOccurs=0)</th>
<th>C_2 (Title, MinOccurs=0)</th>
<th>C_3 (sub-tree of root Author, MinOccurs=2 MaxOccurs=10)</th>
<th>C_4 (Version, MinOccurs=0)</th>
<th>C_5 (Length, MinOccurs=0)</th>
<th>C_6 (sub-tree of root wrl MinOccurs=0)</th>
<th>C_7 (sub-tree of root wrl, MinOccurs=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(D) (Paper)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>D_1 (Title)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>D_3 (sub-tree of root Publisher)</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>D_4 (version)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D_5 (Length)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_6 (sub-tree of root wrl)</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

* Recall that $MinOccurs = 1$ and $MaxOccurs = 1$ designate default values which are equivalent to null constraints, and thus can be omitted in the edit distance matrices (for ease of presentation).

Table E.2

Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree C_i.

<table>
<thead>
<tr>
<th>$R(C_i)$ (Paper)</th>
<th>C_1 (Category, MinOccurs=0)</th>
<th>C_2 (Title, MinOccurs=0)</th>
<th>C_3 (Publisher, MinOccurs=0)</th>
<th>C_4 (version, MinOccurs=0)</th>
<th>C_5 (Length, MinOccurs=0)</th>
<th>C_6 (sub-tree of root wrl, MinOccurs=0)</th>
<th>C_7 (sub-tree of root wrl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(C_i) (Paper)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D_1 (Title)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_3 (sub-tree of root Publisher)</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D_4 (Version)</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_5 (Length)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_6 (sub-tree of root wrl)</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
CosUpd($R(F_{42})$, $R(C_{22})$) = 1) in order to obtain $C_2 \models F_5$. In other words, F_3 is now considered as an (approximate) occurrence of sub-tree C_3 since an infinite number of occurrences of C_2 is accepted in the grammar tree ($ NbOcc[2] = 4 < R(C_2). MaxOccurs = \infty$), in comparison with Example 3 where F_3 was an unwanted occurrence (to be deleted from F in order to obtain $C \models F$). To sum up, having $R(C_2). MaxOccurs = \infty$, $TED_{DDoc_XGm} (F, C) = 2 \rightarrow C \models \{F_4, F_5\}$, designating the costs of (i) inserting node e under sub-tree F_4 and (ii) updating node label f into e in sub-tree F_5 (having $C_2 \approx \{F_4, F_5\}$) in order to obtain $C \models F$.

E.3. Edit distance matrices concerning the running example (in Section 4.4.3)

The highlighted parts in Tables E.1, E.2, and E.3 designate corresponding minimum edit scripts.

References
