New insights into frustrated Lewis pairs: structural investigations of intramolecular phosphane-borane adducts by using modern solid-state NMR techniques and DFT calculations

http://www.producao.usp.br/handle/BDPI/49741

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
New Insights into Frustrated Lewis Pairs: Structural Investigations of Intramolecular Phosphane–Borane Adducts by Using Modern Solid-State NMR Techniques and DFT Calculations

Thomas Wiegand,‡ Hellmut Eckert,*‡ Olga Ekkert,‡ Roland Fröhlich,‡ Gerald Kehr,‡ Gerhard Erker,*‡ and Stefan Grimme*‡

†Institut für Physikalische Chemie and Graduate School of Chemistry, WWU Münster, Corrensstrasse 30, D 48149 Münster, Germany
‡Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstrasse 4, D 53115 Bonn, Germany
§Organisch-Chemisches Institut, WWU Münster, Corrensstrasse 40, D 48149 Münster, Germany

** Supporting Information

ABSTRACT: Covalent bonding interactions between the Lewis acid and Lewis base functionalities have been probed in a series of “frustrated Lewis pairs” (FLPs) (mainly substituted vinylene linked intramolecular phosphane–borane adducts), using solid-state nuclear magnetic resonance techniques and accompanying DFT calculations. Both the 11B NMR isotropic chemical shifts and nuclear electric quadrupolar coupling parameters turn out to be extremely sensitive experimental probes for such interactions, revealing linear correlations with boron–phosphorus internuclear distances. The principal component V_{zz} of the 11B electric field gradient tensor is tilted slightly away (\sim20°) from the boron–phosphorus internuclear vector, leading to an improved understanding of the remarkable reactivity of the FLPs. Complementary 31P(1H)-CPMAS experiments reveal significant 31P–11B scalar spin–spin interactions (J \approx 50 Hz), evidencing covalent bonding interactions between the reaction centers. Finally, 11B(31P) rotational echo double resonance (REDOR) experiments show systematic deviations from calculated curves based on the internuclear distances from X-ray crystallography. These deviations suggest non-zero contributions from anisotropic indirect spin–spin (J anisotropy) interactions, thereby offering additional evidence for covalent bonding.

INTRODUCTION

Frustrated Lewis acid/base pairs (FLPs), which feature intramolecular Lewis acid and Lewis base functionalities in close proximity but within constrained geometries, are of great interest in the field of homogeneous catalysis.¹ Their reactivity stems from the presence of bulky, sterically demanding ligands (e.g., mesityl, tBu, and C₆F₅ groups) attached to the reactive centers, thereby inhibiting the anticipated Lewis acid/base adduct formation.² The close proximity of the Lewis acid and the Lewis base moieties leads to a remarkable cooperative reaction behavior that is in many cases comparable to that of organometallic compounds. The most prominent example is the activation of dihydrogen³–⁵ which offers a completely new line of research for the development of metal-free, environmentally friendly hydrogenation catalysts. But also the activation of CO₆,⁶ carbonyl compounds,⁷,⁸ alkenes,⁹,¹⁰ dienes,¹¹,¹² and alkynes¹³ and the capture of NO¹⁴ have been reported. A large variety of FLPs can be formed from a phosphane Lewis base and a borane Lewis acid functionality combined in an intermolecular or intramolecular manner. Typical adducts (1–9) as investigated in the present manuscript are shown in Figure 1. Of these, one of the earliest and most reactive examples is the four-membered heterocyclic ethylene-bridged phosphane–borane adduct 9 (see Figure 1).⁶ Besides an extremely high reactivity toward dihydrogen, this intramolecular adduct undergoes many other interesting addition reactions.¹⁰ The class of intramolecular phosphane/borane adducts has recently been extended to unsaturated C₂-linked systems, which possess more moderated reactivities.¹⁶ A whole series of these molecules is synthesized by a 1,1-carbaboration reaction and therefore represents a new application in the field of P–C bond activation chemistry.

Despite the large number of experimental reports in the field of FLP chemistry, only a few deal with the theoretical understanding of the chemical reaction mechanisms involving these molecules. Pápai¹⁷,¹⁸ and Grimme¹⁹ have proposed dihydrogen activation mechanisms, in the latter case implicating especially the polarization of dihydrogen in the electric field generated by the donor/acceptor atoms of the intramolecular adducts. A common structural characteristic of these compounds enforcing cooperative effects is the presence of...
significant noncovalent interactions among the bulky ligands. In addition the catalytic activity appears to be modulated by weak interactions (of either the covalent or the noncovalent type) between the two reactive centers. The present study introduces modern solid-state NMR techniques, for the first time, as an experimental probe of such interactions for a series of closely related P/B pairs (mainly substituted vinylene-bridged phosphane–borane adducts), in which the internuclear distance can be varied over a comparatively wide range by suitable choice of ligands. We explore compositional trends signifying weak 11B⋯31P covalent interactions by studying the NMR parameters (such as nuclear electric quadrupolar coupling constants, isotropic chemical shifts and indirect spin–spin coupling constants) with the goal of obtaining a deeper structural insight into the reactivity of those molecules. 11B MAS NMR spectroscopy has developed into a well-established tool for the structural characterization of inorganic boron compounds, as well as boranes. Both the 11B chemical shifts, $\delta_{^{11}B}$, and quadrupole coupling constants, C_Q, are highly sensitive to the boron coordination number, high-frequency shifts and large C_Q values being associated with trigonally coordinated boron sites and low-frequency shifts and small C_Q values with four-coordinated boron species. Finally, the electric field gradient (EFG) asymmetry parameter, η, characterizes the degree to which the local symmetries of the three- or four-coordinated boron species deviate from the axial symmetries D_{3h} or C_{3v}, respectively. In the present study, we establish 11B magic angle spinning (MAS) NMR in the field of frustrated Lewis pairs and highlight the remarkable sensitivity of its parameters toward even small changes in the surroundings of the boron nuclei in local environments that might be considered between three- and four-coordinated bonding scenarios. As previous works have shown, the 11B EFG tensor is also available with high accuracy by DFT calculations, allowing a visualization of the individual tensor components in the molecular axis frame. In a similar vein, the present study examines 31P solid-state NMR parameters such as isotropic chemical shifts and scalar 31P–11B spin–spin coupling constants as probes for covalent boron–phosphorus interactions. Finally, we explore the potential and limitations of 11B(31P) rotational echo double resonance (REDOR) experiments for internuclear distance measurements in these compounds.

The substituted vinylene-bridged intramolecular adducts (compounds 1–6 in Figure 1, for a characteristic structure see Figure 2) consist of a heterocyclic, nearly planar four-membered ring structure as present also in the most prominent FLP, 9. The bridging olefinic functionality leads to an extraordinarily rigid backbone of those molecules. In the compounds 7 and 8, the Lewis acid and base functionalities are linked via a trimethylene and cyclohexylene bridge, respectively. In all molecules, the Lewis acidity of the boron site is enhanced by electron-withdrawing C_6F_5 ligands, while the phosphorus site is electron-rich due to ligands such as mesityl or phenyl. Especially characteristic are significant noncovalent π–π interactions between the electron-poor and electron-rich arene ligands leading to a further stabilization of these molecules.

Compound 10 represents a typical Lewis acid/base adduct, while compound 11 acts as a reference material without any interaction between the base and the acid center. Compounds of type 11 are formed at the beginning of the carboboration and are isolated as stable intermediates, while compound 12 represents the borane starting material. In all cases (except 11 and 12), the Lewis acid and Lewis base moieties are in close contact exhibiting B⋯P internuclear distances varying between 2.03 and 2.19 Å. Within the series of substituted vinylene-bridged adducts, this distance can be adjusted by choice of the ligands on the phosphorus Lewis base site: the more bulky those ligands are, the larger is the boron–phosphorus distance. While these adducts show some of the typical FLP reactions, they do not activate dihydrogen under standard reaction conditions (i.e., ambient temperature and 60 bar H_2 pressure). Nevertheless, we note that the thermodynamic window for the H_2 activation is extremely small, indicating that their reactivity is already moderated (relative...
to those of 8 and 9) by weak intramolecular interactions between the centers. In the present study, quantitative information to this effect will be presented based on combined solid-state NMR experiments and DFT calculations.

Experimental Section

The synthesis and general characterization of compounds 1–12 have been already reported,^6,16,34–29 and relevant details are given in the Supporting Information.

Solid-state NMR measurements were carried out on BRUKER Avance III (300 MHz), Avance DSX 400, and BRUKER Avance DSX 500 spectrometers, corresponding to magnetic flux densities of 7.05, 9.4, and 11.74 T, respectively. All spectrometers were equipped with 4 mm NMR double and triple resonance probes operating at MAS rotation frequencies between 2.4 and 14 kHz.

11B spectra were mainly measured on the 500 MHz spectrometer at a Larmor frequency of 1605 MHz. Signals were acquired following excitation with 30° pulses about 0.6 μs in length and repetition times ranging between 5 and 30 s. Proton decoupled 11B{1H} spectra were obtained at 9.4 T with 90° pulses of about 1.5 μs length and a 1 H decoupling pulse length of 7.1 μs applied in a TPPM-15^36 decoupling scheme. 11B{1H} spectra were obtained at 11.74 T using a three-pulse z-filtering sequence. The optimized lengths of the strong preparation and reconvolution pulses were varied between 3.8 and 5.5 μs and between 1.5 and 1.7 μs, respectively (nutation frequency $\nu_1 \approx 130$ kHz for a liquid sample). The single quantum signal was detected by a soft pulse of 10 μs length in all cases (nutation frequency $\nu_1 \approx 30$ kHz for a liquid sample). The increment for the evolution time was adjusted to $1/(14000 \times 2)$ s (with n value of 1, 2, or 3), and a recycle delay of 5–30 s was used. A comparison of the centers of gravity in the isotropic F1 and anisotropic F2 rotation frequencies between 2.4 and 14 kHz.

Chemical shifts are reported relative to a 85% H3PO4 solution. Shape analysis was done by using the DMFIT software (version 2011). Chemical shifts were referenced to phosphoric acid (δ = 86.0 ppm) as an external standard.

Results and Discussion

For the calculations of nuclear electric quadrupole coupling tensors,^21,25 the positions of the heavy atoms were taken from the crystal structure, whereas the positions of the hydrogen atoms were optimized on the DFT TPSS level with Alrich's de2-TZVP basis set. The calculations of the electric field gradients were performed on a GGA DFT level (functional B97-D^37) using the program package GAUSSIAN09. The de2-TZVP basis set obtained from the EMSL database^53 was modified in such a way that tighter basis functions on the boron atom (extracted from the cc-pCVTZ basis set)^54,55 for details see Supporting Information section) were included for having a more accurate description of the region near the boron nucleus. The GAUSSIAN output files were analyzed by using the program EFGshield,^22 version 2.2, for determination of C_Q and η values and visualizing the orientation of the electric field gradient tensor in the molecular geometry by using the DIAMOND software.^56

In case of model adduct calculations as a function of the boron–phosphorus distance, the latter was fixed to characteristic values ranging between 1.85 and 2.6 Å, while the rest of the structure was optimized on the TPSS-D3 de2-TZVP level of theory; C_Q and η values were calculated at the B97-D/de2-TZVP level of theory.

The magnetic shielding calculations were performed within the GIAO (gauche-independent atomic orbitals) framework,^50,57 For 11B, the magnetic shielding calculations were calculated on the B3-LYP^58,59 and BP-86^60,61 level of theory with the de2-TZVP basis set using the TURBOMOLE program package. Chemical shifts are referenced to BF$_3$Et,O by using B$_3$H$_6$ (δBF$_3$Et,O = 16.6 ppm vs BF$_3$Et,O) as an external standard (δB$_3$H$_6$ = 81.04 ppm, $\delta(BH_2)$ = 84.23 ppm).^62–65 31P chemical shifts were calculated with the B3-LYP functional and the de2-TZVP basis set. Chemical shifts were referenced to phosphoric acid (δP$_2$O$_5$ = 274.31 ppm). 31P chemical shift anisotropy (CSA) parameters were calculated on the B3-LYP TZVP^66 level of theory using the program package GAUSSIAN09.

31P/B11B indirect spin–spin coupling constants were calculated on a B3-LYP TZVP level of theory using the program package GAUSSIAN09. The same geometries as in the calculations of nuclear quadrupole couplings were used. In case of the trans model of I, a complete geometry optimization was carried out on the TPSS-D3/def2-TZVP level of theory. The analysis of the distance-dependence of the J spin–spin coupling constant for compound 10 was performed by varying the boron–phosphorus distance within the framework of the crystal structure.

Wiberg bond order indices^67 in the Cartesian atomic orbital (CAO) basis were calculated from the TPSS Kohn–Sham determinants by using the TURBOMOLE program package and those in the natural atomic orbitals (NAO) basis were calculated by using the NBO program (version 3.1)^68 as included in GAUSSIAN09.

11B MAS NMR and DFT Calculations

Figure 3 summarizes the 11B MAS NMR data obtained on the intramolecular adducts studied as well as on the reference
values determined from these data, either by simulating the η under TPPM-15 proton decoupling. The + sign marks impurities.

Figure 3. 11B MAS NMR spectra for the investigated P/B compounds (straight lines) and their corresponding simulations (dashed lines): (a) 1 (R = mes, R’ = ph), (b) 2 (R = ph, R’ = ph), (c) 3 (R = ph, R’ = n-propyl), (d) 4 (R = ph, R’ = PPPh3), (e) 5 (R = mes, R’ = tolyl), (f) 6 (R = ph, R’ = me), (g) 7, (h) 8, (i) 9, (j) 10, and (k) 11. All spectra were acquired at 11.7 T, except g and i, which were measured at 9.4 T under TPPM-15 proton decoupling. The + sign marks impurities.

As previously noted by Bryce et al. for related compounds (e.g., trimesitylborane, BMes3, and triphenyl borate, B(OPh)3), the second-order quadrupolar effects characterized by a large chemical shift anisotropy,20 while the crystal structure of B(C6F5)3 is not known, the characteristic 11B MAS NMR line shape is consistent with a local D3h symmetry at the boron center, as expected from the fact that all three ligands are identical. The DFT calculation of the 11B electric field gradient in the gas phase yields a CQ value of 4.04 MHz and an η value of zero, which is in good agreement with the experimental results obtained in the solid state. The principal EFG component, Vzz, is aligned perpendicular to the molecular plane. The simulation that best reproduces the experimental spectrum indicates that the electric field gradient tensor at the 11B site and the 11B magnetic shielding tensors are coincident. The four-coordinated boron atom of compound 11 exhibits the

Table 1. Experimentally and Quantum-Chemically Determined 11B δCS, CQ, and η Values

<table>
<thead>
<tr>
<th>n</th>
<th>δCS (calcd, ppm)</th>
<th>CQ (calcd, MHz, ±3%)</th>
<th>η (calcd, ±0.1)</th>
<th>δCS (expt, ppm, ±0.5)</th>
<th>CQ (expt, MHz, ±3%)</th>
<th>η (expt, ±0.1)</th>
<th>Vzz (calcd, MHz)</th>
<th>Vzz (expt, MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1b</td>
<td>1.54 ±1.55b</td>
<td>0.19b</td>
<td>−0.6</td>
<td>1.58</td>
<td>0.12</td>
<td>26.5</td>
<td>22.4</td>
</tr>
<tr>
<td>2</td>
<td>−7.9b −6.9b</td>
<td>1.25 ±1.36b</td>
<td>0.18b 0.15b</td>
<td>−7.4b</td>
<td>1.43b</td>
<td>0.05c</td>
<td>21.6</td>
<td>23.2</td>
</tr>
<tr>
<td>3</td>
<td>−6.6b</td>
<td>1.34 ±1.35b</td>
<td>0.15b</td>
<td>−7.6</td>
<td>1.37</td>
<td>0.04</td>
<td>22.4</td>
<td>24.2</td>
</tr>
<tr>
<td>4</td>
<td>−4.7b</td>
<td>1.31 ±1.31b</td>
<td>0.17b</td>
<td>−6.6</td>
<td>1.36</td>
<td>0.05</td>
<td>22.4</td>
<td>24.2</td>
</tr>
<tr>
<td>5</td>
<td>0.3b</td>
<td>1.55 ±1.57b</td>
<td>0.17b</td>
<td>−1.9</td>
<td>1.51</td>
<td>0.13</td>
<td>23.7</td>
<td>23.7</td>
</tr>
<tr>
<td>6</td>
<td>−7.5b</td>
<td>1.25 ±1.27b</td>
<td>0.16b</td>
<td>−9.2</td>
<td>1.33</td>
<td>0.07</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>7</td>
<td>−9.1c</td>
<td>1.43 ±0.55c</td>
<td>0.10b</td>
<td>−10.2</td>
<td>1.49</td>
<td>0.53</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>8</td>
<td>−8.1c</td>
<td>1.40 ±0.43c</td>
<td>0.14b</td>
<td>−10.2</td>
<td>1.42</td>
<td>0.39</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>9</td>
<td>3.5c</td>
<td>1.68 ±0.6c</td>
<td>0.14b</td>
<td>−14.5</td>
<td>2.62c 0.26b</td>
<td>0.02</td>
<td>19.2</td>
<td>19.2</td>
</tr>
<tr>
<td>10</td>
<td>−7.4f</td>
<td>1.59 ±1.63f</td>
<td>0.13f</td>
<td>−8.8</td>
<td>1.60</td>
<td>0.02</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>−16.7f</td>
<td>0.33f</td>
<td>0.34f</td>
<td>−19.5</td>
<td>0.47</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>58.7c</td>
<td>4.26 ±0.02c</td>
<td>54.5c</td>
<td>4.04c 0.00f</td>
<td>0.02</td>
<td>4.04c 0.00f</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

aChemical shifts were calculated on a DFT B3-LYP/def2-TZVP, electric field gradients on a DFT B97-D/def2-TZVP (modified) level of theory.
bDetermined from line shape analysis of slices from MQMAS experiments. cDetermined from line shape analysis of 11B MAS spectra. dDetermined from 11B SATRAS spectrum (see Figure S3, Supporting Information). eFully geometry-optimized structures are used within the calculations. fOrientation of the DFT calculated (B97-D, def2-TZVP (modified)) main principal component of the EFG tensor, Vzz, expressed by the angle between this parameter and the B···P distance vector.
smallest quadrupolar coupling constant within this series (0.33 MHz, \(\eta = 0.3 \)), reflecting a boron site with nearly tetrahedral symmetry. These values were determined by fitting the intensity distribution within the MAS side band pattern, which arises from the effect of magic-angle spinning on the anisotropically broadened first-order quadrupolar satellites (SATRAS, see Figure S3, Supporting Information). Finally, the spectrum of the \(\text{PPh}_3^-\text{B}(\text{C}_6\text{F}_5)_3 \) adduct 10 is characterized by an intermediate quadrupolar coupling constant (1.6 MHz) and an asymmetry parameter close to zero, consistent with the local \(C_3 \) symmetry of the central boron atom. The trimethylene-bridged \(\text{PPh}_3^-\text{borane} \) adduct 7 shows a characteristic \(^{11}\text{B} \) MAS NMR line shape reflecting a quadrupolar coupling constant of 1.4 MHz and an asymmetry parameter of 0.55. In this case, the large asymmetry parameter can be attributed to the unsymmetric ligation pattern (\(\text{C}_6\text{F}_5 \) groups and the trimethylene bridge) and the significant interaction with the phosphorus Lewis base center evident from the crystal structure.

The remaining spectra shown in Figure 3 reveal the wide range of chemical shifts and quadrupolar interaction parameters measured for the different intramolecular adducts investigated in this study. The phosphane–borane systems 1–6 and the \(\text{PPh}_3^-\text{B}(\text{C}_6\text{F}_5)_3 \) Lewis acid/base adduct 10 give rise to intermediate quadrupolar coupling strengths (\(C_Q \) values near 1.5 MHz) thus clearly reflecting the local distortions from the ideal trigonal local geometry present in 12. The latter distortions are also readily apparent from the angle sums, obtained from both the DFT calculations and the crystal structures (see Table 2). Notably, the distortions appear to maintain the local \(C_3 \) axis, as reflected by the calculated and measured asymmetry parameters, which are found close to zero. The isotropic chemical shift values range within the interval 0.3 to 7.6 ppm. The agreement with the theoretically calculated values is excellent \((R^2 = 0.998, \text{see Table 1}) \).
Figure S4, Supporting Information). For compound 2, the TQMAS spectrum clearly shows two slightly different boron positions ($C_{Q} = 1.25$ and 1.36 MHz, $\delta_{11B}^Q = -7.6$ and -5.9 ppm) in an approximate intensity ratio of 2:1 (see Figure 5 and Figure S5, Supporting Information). We believe that these different sites might arise from packing effects or disorder in the solid state, which may explain why up to now the crystal structure could not be solved. Our unconstrained DFT geometry optimizations (TPSS-D344,45 def2-TZVP46 see Experimental Section) yield a boron–phosphorus distance of 2.05 Å, which is in good agreement with the experimentally determined distances within the series of intramolecular adducts (see Table 2). Finally, relatively large C_{Q} values are measured for the extremely reactive model compounds 8 and 9. In these cases, the asymmetry parameters of 0.43 and 0.6 reflect the considerable distortion of the electric field gradient caused by the nonsymmetric substitution pattern at the three-coordinated boron site. In the case of compound 9, the experimental 11B chemical shifts and quadrupolar coupling parameters show sizable deviations from the calculated values. This might reflect the more fluxional character of this compound in the solid state. As a result, a correct calculation would have to include an averaging process over multiple configurations, which was not done in the present study.

The interesting question is whether the 11B chemical shifts and quadrupolar coupling parameters can be related to special structural characteristics that define the high reactivity of FLPs and therefore may allow further insights into the reaction behavior of those molecules. As previous calculations have shown,19 the electric field generated by the Lewis acid and Lewis base functionality is responsible for the extremely fast heterolytic cleavage of dihydrogen. Moreover, these calculations have revealed that the dissociation of the H_2 molecule takes place nearly barrier-free after the molecule is oriented within the reactive pocket. Therefore, it is reasonable to assume that the boron–phosphorus distance is a very important structural characteristic having a significant influence on the reactivity of these molecules. Our investigations show that the 11B NMR parameters for compounds 1–8 are strongly correlated with this parameter. Figure 6 illustrates the high sensitivity of 11B isotropic chemical shifts to the B···P distances for the series of these intramolecular adducts. The general trend that larger distances result in a high-frequency shift of the 11B resonance is clearly apparent. The data are compared with chemical shift calculations carried out for the model compound $Ph_2P=\overset{\text{B}}{C_6H_4}=B(C_6F_5)_2$, where the boron–phosphorus distance was changed from 1.8 to 2.6 Å and full relaxation of all other degrees of freedom was guaranteed. The closely parallel chemical shift from 1.8 to 2.6 Å and full relaxation of all other degrees of freedom was guaranteed. The closely parallel chemical shift from 1.8 to 2.6 Å and full relaxation of all other degrees of freedom was guaranteed. The closely parallel chemical shift from 1.8 to 2.6 Å and full relaxation of all other degrees of freedom was guaranteed.

Besides the chemical shifts, especially, the 11B C_{Q} values are modified by the intramolecular interactions between the Lewis centers. These effects are summarized in Figure 7 in which the C_{Q} values are plotted against the experimental B···P distances for the compounds 1–8. The smallest quadrupolar coupling constants are observed for the intramolecular adduct 6, while the largest C_{Q} results in case of compound 8. Figure 7 points out that the larger the B···P distances are, the larger are the C_{Q} values indicating lesser degrees of distortion of the boron site from trigonal geometry. These results suggest that the 11B quadrupolar coupling constant can be interpreted in terms of the interaction between the Lewis acid and Lewis base functionality. Again, theoretical investigations on the model system $Ph_2P=\overset{\text{B}}{C_6H_4}=B(C_6F_5)_2$ over the distance range 1.8–2.6 Å confirm these findings: larger quadrupolar coupling constants result for larger B···P distances due to reduced Lewis acid/Lewis base interactions (Figure 8b). These calculations also show that the asymmetry parameter tends to decrease strongly as a function of B···P distances (Figure 8a).

dx.doi.org/10.1021/ja210160k | J. Am. Chem. Soc. 2012, 134, 4236–4249
A more profound understanding of the experimentally observed correlations of the EFG with the boron–phosphorus distance is obtained by visualizing the DFT-calculated EFG principal axis tensor elements in the molecular frame. In case of main group elements such as boron, the EFG is dominated by the outer core and valence shell electronic distribution. Therefore an accurate description of both the valence and the core shell electrons is required. To this end, we used Ahlrich’s def2-TZVP46 basis set, which is modified at the boron atom by using tighter basis functions extracted out of Dunning’s correlation consistent basis set 54,55 (for more details, see Experimental Section and Figure S6, Supporting Information).

Our theoretical studies are based on calculations in the gas phase, thus neglecting the interactions between the discrete molecular units in the solid state. As indicated in Figure 9, the DFT B97-D51 level of theory allows a very accurate determination of 11B CQ values resulting in a linear correlation between experimentally and theoretically determined values (the R² value is determined as 0.997). The theoretical studies reveal in case of the substituted vinylene-linked intramolecular adducts asymmetry parameters ranging between 0.04 and 0.13. These values are consistent with a local boron geometry that is still close to trigonal as is expected from the crystallographically determined bond angle sum for the boron site of about 340–350°.

The strong distance-dependence of the 11B quadrupolar coupling constant can be understood by analysis of the orientation of the largest principal component of the electric field gradient tensor in the molecular frame. In all cases, the Vzz component points only slightly away from the B···P vector (for examples, see Figure S7, Supporting Information, exact values are given in Table 1) and is therefore strongly influenced by the interaction among both Lewis centers. The herein developed combination of experimental and theoretical NMR work allows an analysis of the electric field described in the theoretical work by Grimme and co-workers in terms of the electric field gradient from the viewpoint of the boron site. Since the calculated principal component of the electric field gradient points slightly away from the boron–phosphorus axis (see Table 1), it is reasonable to assume that a completely linear geometry of the P–H–H–B unit (as, for example, proposed by Pápai and co-workers17) is not necessarily an essential requirement for an efficient activation of H2 within the FLP.19 These considerations hold also for the adducts 8 and 9, which are extremely sensitive toward a reaction with H2.

31P{1H} CPMAS NMR and DFT Calculations. Figure 10 summarizes the 31P{1H} CPMAS NMR spectra of the intramolecular adducts of our present study, and Table 3 summarizes the spectroscopic parameters determined from them. The 31P isotropic chemical shifts fall within a narrow characteristic chemical shift window between approximately 25 and 5 ppm directly reflecting the extent of the intramolecular adduct formation. In case of the system 4, two signals are observed at 24.5 and −8.3 ppm because there are two crystallographically distinct phosphorus positions: one interacting with the boron Lewis acid site and the other one standing...
In case of the intramolecular adducts 1, 3, 5, and 6, the 31P spectra resolve a clear multiplet structure. As illustrated in Figure 11 for compound 1, the peak splittings are nearly field independent on a hertz scale and therefore suggest the influence of indirect 31P····10B/11B spin–spin couplings. In addition, the asymmetric peak separations exhibit the clear signature of dipolar interactions with a quadrupolar nucleus. It is well-known that heteronuclear dipole–dipole interactions of spin-1/2 with nuclei experiencing strong quadrupolar coupling constants are not completely eliminated under MAS conditions. In the context of first-order perturbation theory, the 31P MAS NMR transitions in the presence of this interaction can be written as:

$$u_m = -mJ + \frac{S(S + 1) - 3m^2}{S(2S - 1)}d$$

(1)

where J are the isotropic 10/11B, 31P indirect spin–spin coupling constants, S are the nuclear spin quantum numbers for the quadrupolar nucleus ($I = 3/2$ and 3 for 10B and 11B, respectively), m is an orientational quantum number, and d is the dipolar coupling. The latter value is given by:

$$d = \frac{-3CQ(D - \frac{\Delta J}{3})}{2\nu_0} (3\cos^2 \beta D - 1 + \eta \sin^2 \beta D \cos 2\alpha D)$$

(2)

with D describing the B,P direct dipolar coupling constant, ΔJ the anisotropy of the indirect spin–spin coupling tensor, ν, the 10B or 11B Larmor frequency, CQ the 10B or 11B quadrupolar coupling constant, η the asymmetry parameter, and α and β the Euler angles defining the orientation of the dipolar vector in the principal axis system of the EFG. To the best of our knowledge, we report the first fully resolved asymmetric splitting for a 11B,31P spin system, although many other examples of scalar couplings between spin 1/2 and quadrupolar nuclei have been published including the 31P/69,71Ga, 31P/55Mn, 31P/65,67Cu, 31P/79,101Re, 31P/95,97Mo and 31P/95,97Mo spin systems. Partially resolved J-multiplets in 31P,11B spin systems have been previously published. The line shape analysis is achieved by using the DMFIT software (see Table 3 and Figure S9, Supporting Information). Our simulations take into account the natural abundances of 10B and 11B, 19.9% and 1.1%, respectively. As illustrated by Figure S8, Supporting Information, both phosphorus species can be unambiguously differentiated by DFT magnetic shielding calculations on the B3-LYP level of theory leading to chemical shifts of 23.6 ppm and -10.1 ppm for both respective resonances.

In the case of the P/B pair 2, two different peaks with slightly different chemical shifts are observed. Consistent with the conclusions from 11B MAS NMR, this observation confirms the assumed disorder phenomenon suspected in the solid state.

Table 3. 31P Isotropic Chemical Shifts, Indirect 10/11B–31P Spin–Spin Coupling Parameters, Residual Dipolar Couplings, and Chemical Shift Anisotropy Parameters (Determined by Line Shape Analysis of Slow-Spinning MAS Experiments) for the Investigated Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ_{iso}, ppm</th>
<th>$J(31P,10B)$, Hz</th>
<th>$\Delta\sigma$, ppm (η_m)</th>
<th>$J(31P,11B)$, Hz</th>
<th>$d(31P,10B)$, ppm (δ_m)</th>
<th>$d(31P,11B)$, ppm (δ_m)</th>
<th>$\Delta\sigma$, ppm (η_m)</th>
<th>$\Delta\sigma$, ppm (η_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.8</td>
<td>54.5</td>
<td>83.8 (0.49)</td>
<td>18.0</td>
<td>51.1</td>
<td>-5.5a (-4.1a)</td>
<td>-11.5a (-8.6a)</td>
<td>24.1</td>
</tr>
<tr>
<td>2</td>
<td>-15.3/10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14.5</td>
<td>52.0</td>
<td>54.0 (0.56)</td>
<td>17.2</td>
<td>51.4</td>
<td>-6.0a (-4.5a)</td>
<td>-12.5a (-9.4a)</td>
<td>16.5</td>
</tr>
<tr>
<td>4</td>
<td>24.5/-8.3</td>
<td>682/87.5</td>
<td>0.77/0.95</td>
<td>52.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14.4</td>
<td>52.9</td>
<td>94.4 (0.56)</td>
<td>17.5</td>
<td>56.1</td>
<td>-6.0a (-4.5a)</td>
<td>-12.5a (-9.4a)</td>
<td>19.3</td>
</tr>
<tr>
<td>6</td>
<td>14.7</td>
<td>52.9</td>
<td>55.6 (0.65)</td>
<td>17.2</td>
<td>52.2</td>
<td>-6.0a (-4.5a)</td>
<td>-12.5a (-9.4a)</td>
<td>11.8</td>
</tr>
<tr>
<td>7</td>
<td>21.1</td>
<td>56.6</td>
<td>65.5 (0.85)</td>
<td></td>
<td>45.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23.1</td>
<td>78.2</td>
<td>0.60</td>
<td></td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>21.7</td>
<td>69.9</td>
<td>0.92</td>
<td></td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18.6</td>
<td>30.4</td>
<td>0.83</td>
<td></td>
<td>49.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-130.5</td>
<td>450.3</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-161.1</td>
</tr>
</tbody>
</table>

aThe calculated J coupling constants, $\Delta\sigma$, and η values result from DFT calculations (B3-LYP, TZVP), in the latter case using the convention $\Delta\sigma = \sigma_{g} - 1/2(\sigma_{12} + \sigma_{21})$, $\eta = (\sigma_{22} - \sigma_{11})/(\sigma_{22} + \sigma_{11})$ and $\Delta\sigma = |\sigma_{12} - \sigma_{21}| > |\sigma_{11} - \sigma_{22}|$. Calculated chemical shifts (DFT, B3-LYP, def2-TZVP) are referenced to phosphoric acid. b Measured at 7.1 T. c Measured at 9.4 T.
respectively, and the fact that the J and d values for 10B and 11B must be scaled according to the magnetogyric ratios
\[
\frac{\gamma(10B)}{\gamma(11B)} = 0.33
\]
and nuclear quadrupole moments
\[
\frac{Q(10B)}{Q(11B)} = 2.084,
\]
respectively.81 Figure 11 shows the 31P{$_{1H}$} CP-MAS spectra of 1 at two different field strengths and their corresponding simulations comprising both the contributions from dipolar interactions with 10B and 11B. The simulations reveal that the indirect J-coupling between 31P and 11B dominates the line shape splitting and $^{1}J(31P \cdots 11B)$ is determined to be 54.5 Hz. This relatively large coupling constant characterizes the covalent interactions between the Lewis acid and Lewis base through a weak but non-negligible covalent bond between boron and phosphorus. It is reasonable to assume that this coupling belongs to a ^{1}J coupling rather than a ^{3}J coupling via the olefinic backbone based on additional evidence discussed in more detail below. Similar splittings are observed for compounds 3, 5, and 6 (see Figure 11), whereas in some of the adducts measured in this study, the multiplet splittings are not clearly resolved. We attribute this to degraded resolution owing to a lower degree of sample crystallinity or rapid fluctuations of the spins among the various 10B and 11B Zeeman levels leading to significant relaxation broadening. Nevertheless, even in those cases, field-dependent line width analyses suggest that these interactions contribute to the 31P NMR line shapes observed (see Table 4), except for compound 9, the line shape of which is dominated by chemical shift distribution effects indicating considerable disorder in the solid state. Additionally the large line width observed for 9 may reflect dynamic processes on the NMR spectra, consistent with its suspected fluxional character in the solid state.

Figure 11. (left) 31P{$_{1H}$} CPMAS spectra of compound 1 (R = mes, R’ = ph) acquired at different field strengths. (top) Spectrum measured at 7.1 T using the SW-TPPM-15 decoupling scheme (b) and simulated spectrum (a) showing also the contributions due to 31P···11B (dotted line) and 31P···10B (dashed line) indirect spin–spin coupling. (bottom) Spectrum measured at 9.4 T using the TPPM-15 decoupling scheme (b) and simulated spectrum (a) showing also the contributions due to 31P···11B (dotted line) and 31P···10B (dashed line) indirect dipolar coupling. Simulation parameters are given in Table 3. (right) 31P{$_{1H}$} CPMAS spectra acquired with the SW-TPPM-15 decoupling scheme at 7.1 T of compounds 1 (a), 3 (b), 5 (c), and 6 (d) where the J coupling multiplet could be fully or partially resolved.

Table 4. 31P Full Widths at Half Maximum (fhwm) at Two Different Field Strengths for Those Molecules for Which the Spin–Spin Coupling Multiplets Could Not Be Resolved

<table>
<thead>
<tr>
<th>Compound</th>
<th>fhwm (7.0 T), Hz</th>
<th>fhwm (9.4 T), Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>230</td>
<td>209</td>
</tr>
<tr>
<td>4 (~8.3 ppm)</td>
<td>118</td>
<td>119</td>
</tr>
<tr>
<td>7</td>
<td>201</td>
<td>186</td>
</tr>
<tr>
<td>8</td>
<td>174</td>
<td>152</td>
</tr>
<tr>
<td>9</td>
<td>904</td>
<td>1100</td>
</tr>
<tr>
<td>10</td>
<td>236</td>
<td>223</td>
</tr>
</tbody>
</table>

“Nearly identical peak widths (except for 9) suggest that spin–spin couplings exert a dominant influence on the line shapes, whereas the broad peak in the case of 9 can be attributed to chemical shift distribution or possibly also dynamic effects. In case of 4, the remarkable differences in the peak widths directly reflect the influence of ^{1}J and ^{3}J 31P···10B/11B spin–spin couplings, respectively, on the MAS NMR line shapes.

The alternative possibility that the observed peak splitting actually arises from ^{3}J, rather than ^{1}J, scalar coupling has been experimentally addressed by analyzing the linewidths of the 31P resonances of 4. The resonance of the cis-phosphorus site interacting with the boron Lewis acid site exhibits a much larger line width than the resonance of the phosphorus site oriented trans to the boron unit (209 vs 119 Hz at 9.4 T, see Table 4). This difference is attributed to a much larger ^{1}J coupling constant in comparison to that of a ^{3}J coupling. Additionally, we performed theoretical calculations of scalar coupling constants for answering this question satisfactorily. All the J coupling analysis described within this work has been
performed on a hybrid DFT level of theory using the functional B3-LYP. For I, these calculations lead to a ^11B-^31P J coupling constant of 5.1 Hz, in very good agreement with the experimental value (5.45 Hz). Such values are comparable in magnitude to $\{J\}$ (^11B-^31P) values measured in solution for the adduct between PPh$_3$ and BH$_4^-$ (approximately 60 Hz) and also calculated for the classical Lewis acid/base adduct. Calculations on this model compound under systematic variation of the B···P distance reveal a strong distance dependence, as illustrated in Figure S11, Supporting Information. Finally, the $\{J\}$ coupling constant of the trans isomer of 1 (see Figure S12, Supporting Information) is calculated as 18.3 Hz. Because this value corresponds to the maximum value based on the Karplus curve, a significantly smaller $\{J\}$ value would be expected for the cis-isomer. Based on all of these considerations, it is safe to conclude that the observed peak splittings arise from $\{J\}$ and not from $\{J\}$ couplings between ^31P and the boron nuclides. This result is in accordance with the computed Wiberg bond-order indices. A bond-order index of about one indicates the presence of a mostly covalent single bond, while values close to zero point to ionic or van der Waals interactions. In the case of the unsaturated intramolecular adducts the Wiberg bond-order indices range between 0.73 and 0.91 in the CAO basis and 0.78 and 0.82 in the NAO basis (see Table S10, Supporting Information). While the WBIs in the CAO basis do not correlate well with the B···P internuclear distances, a much more consistent trend for them is found in the NAO basis, even though individual differences are rather small. The covalent bonding interaction is further probed by a natural bond orbitals (NBO) analysis, which reveals a real bond between the phosphorus and boron moieties (see Table S10, Supporting Information) in all of the compounds investigated. The percentage of the NBO on the natural atomic hybrid localized at B correlates well with the B···P internuclear distances, with the highest numbers being observed for compounds 3, 4, 6, and 7 ($d(\text{B···P}) = 2.02-2.06$ Å), intermediate values for compounds 1 and 5 ($d(\text{B···P}) = 2.09-2.12$ Å), and much lower numbers being observed for compounds 8 and 9 (longest distances). Only compound 10 presents a somewhat larger deviation from this trend.

Distance Measurements by ^11B(^31P) REDOR Experiments. Against the background of obtaining deeper insight into the interactions between the Lewis acid and base functionalities, it is desirable to determine boron–phosphorus distances even in those compounds for which no crystal structure data are available. Solid-state NMR offers an important opportunity in such cases by conducting rotational echo double resonance (REDOR) experiments. Such REDOR experiments are designed to measure the heteronuclear magnetic dipole coupling constant, D, between two nuclei I and S

$$D = \frac{\mu_0}{8\pi^2} \left| \frac{1}{r_{IS}} \cdot \frac{1}{r_{IS}} \right|^{-3}$$

under MAS conditions, where r_{IS} and r_{IS} are the corresponding gyromagnetic ratios and r_{IS} is the internuclear distance. While the magnetic dipole–dipole coupling is averaged out over the MAS rotor cycle, it can be reintroduced by applying additional inversion pulse trains to one (or both) of the nuclei during the rotor cycle. This recoupling process diminishes the signal amplitude S, in relation to that observed in the absence of the inversion pulse trains (S_0). Under such conditions, the normalized difference signal $\Delta S = (S_0 - S)/S_0$ changes periodically (like cos $\Delta \Phi$) as a function of the dipolar evolution time, NT, where

$$\Delta \Phi = 4\sqrt{2\pi NT} D \sin \beta \cos \beta \sin \alpha$$

In this expression, N is the number of rotor cycles, T_r is the rotor period, and the angles α and β are Euler angles describing the orientation of the dipolar vector in the MAS rotor axis system. For a polycrystalline sample, a powder average must be taken by appropriate integration over all the Euler angles.

$$\Delta S = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \sin \beta \cos(\Delta \Phi) d\beta$$

Equations 4 and 5 yield the so-called REDOR curve, which is a plot of $\Delta S/S_0$ as a function of the dipolar evolution time, NT. For a two-spin system, simulation of this curve yields the dipolar coupling constant D from which the internuclear distance r_{IS} can be extracted via eq 3.

The intramolecular adducts of the present study can be considered as ideal ^31P-^11B two-spin systems, for which the internuclear distance should be easily measurable using the REDOR experiment. In the present work, we will demonstrate the calibration of this approach for molecules with known boron–phosphorus distances, which can then be extended to adducts with unknown structures.

Figure 12 shows the ^11B(^31P) REDOR curve for 3. Data have been corrected for potential limitations in the ^31P excitation efficiencies, using a compensation scheme developed in our laboratory, applied with a calibration factor of 1.4. As Figure 12 reveals, the data set shows the oscillatory behavior characteristic of an isolated two-spin system as predicted by eqs 4 and 5. The experimental REDOR curve is compared with various simulated curves for different internuclear distances. These REDOR curves are further influenced by the ^31P
chemical shift anisotropy, and the experimentally determined values ($\Delta \sigma = 54$ ppm, $\eta_\sigma = 0.56$) have been included in these simulations. The oscillating part of the experimental curve is best reproduced by a simulation based on an internuclear distance of 2.06 Å, which differs slightly from the crystallographic value of 2.038 Å. Analogous measurements on the other adducts of the present study show that these underestimations of $B_{\cdots P}$ distances are rather general. The REDOR data tend to underestimate the 31P–11B dipolar coupling strengths systematically, leading to an overestimation of the internuclear distances. Despite this limitation, it will be possible to use REDOR data for obtaining boron–phosphorus internuclear distances for intramolecular adducts with unknown crystal structures or in amorphous systems by calibration against reference data.

As a matter of fact, the experimental and simulated REDOR curves based on the crystallographic $B_{\cdots P}$ distance can be made to agree with each other by including a contribution arising from the J coupling anisotropy (ΔJ) in the simulations (see Figure 13a,b for two representative adducts). As expressed by eq 2, the combination of the direct dipolar coupling and the J anisotropy leads to a reduced effective dipole–dipole coupling, which ultimately determines the frequency of the dipolar oscillations. The determined ΔJ values for the intramolecular adducts range between 60 and 150 Hz; for the adduct 10 a slightly larger value of 200 Hz is observed (see Table 5).

Additionally, we performed 11B(31P) constant-time REDOR (CT-REDOR) experiments in which the evolution time (i.e., the number of rotor periods) is held constant and the phases of the dephasing π-pulses are stepped through the rotation period.38 Again, these studies were conducted with a compensation scheme. Figure 14 shows compensated CT-REDOR curves for 3 with three different evolution times probing characteristic parts of the REDOR curve. The results support the conclusion drawn for the standard REDOR experiments. The boron–phosphorus distances extracted from the oscillatory part of the CT-REDOR curve tend to be overestimated, and the experimental CT-REDOR curves can be correctly reproduced based on the crystallographic $B_{\cdots P}$ distance if non-zero anisotropies of the J coupling tensor (with ΔJ values ranging between 60 and 219 Hz) are included in the simulations (see Table 5). We emphasize that especially in systems with long 11B relaxation times and low boron contents (by mass), CT-REDOR experiments lead to significant savings in experimental time compared with conventional REDOR measurements.

Finally, for all of the adducts investigated in the present study, we have noticed a subtle distortion of the experimental REDOR and CT-REDOR curves in the sense that the extent of the initial dephasing in the limit of small dipolar evolution times falls slightly below the extent of dephasing predicted from the oscillatory part (see Figure 13). That is, both parts of the REDOR curve would actually result in slightly different values of effective dipolar coupling constants. We speculate that these distortions result mainly from heteronuclear interactions with the homonuclearly coupled proton spin reservoir88 or other systematic errors as already described in the literature.89–91 The origin of these deviations can be explored by conducting these REDOR experiments with 1H multipulse decoupling or on perdeuterated compounds, to be examined in future work.

The non-zero contributions of the anisotropy of the J coupling tensor suggested by our REDOR experiments lend further support to the presence of covalent interactions between the acid and base centers in the intramolecular adducts investigated.

<table>
<thead>
<tr>
<th>$d_{\mathrm{redor}}(B\cdots P)$, Å</th>
<th>$d_{\mathrm{CT-redor}}(B\cdots P)$, Å</th>
<th>$\Delta \sigma_{\mathrm{redor}}$ ($\Delta \sigma_{\mathrm{CT-redor}}$), Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2.115(2)</td>
<td>2.18 (2.14)</td>
<td>150 (60)</td>
</tr>
<tr>
<td>3 2.038(3)</td>
<td>2.06 (2.13)</td>
<td>60 (219)</td>
</tr>
<tr>
<td>4 2.038(7)</td>
<td>2.06</td>
<td>60</td>
</tr>
<tr>
<td>6 2.026(2)</td>
<td>2.06 (2.06)</td>
<td>80 (80)</td>
</tr>
<tr>
<td>10 2.180(6)</td>
<td>2.29 (2.29)</td>
<td>200 (200)</td>
</tr>
</tbody>
</table>

*Numbers given in parentheses are best-fit values from CT-REDOR data.
Overall, the present study illustrates the power and potential with unknown crystal structures or amorphous materials. It lends itself to distance measurements in intramolecular adducts. With these considerations in mind, the method − however, the REDOR curves are well reproducible, that is, the principal electric field gradient component, \(\Delta f \), can be taken into consideration. Experimental obtained values. These DFT calculations reveal electric field gradients on a GGA level for single molecules in the gas phase, which are in excellent agreement with theoretical calculations. These results suggest that a mechanism of the dihydrogen activation.

\[\begin{align*}
\Delta f &= 0 \\
\sigma &= 0.56
\end{align*} \]

The latter result is supported by DFT calculations of electric field gradients on a GGA level for single molecules in the gas phase, which are in excellent agreement with experimentally obtained values. These DFT calculations reveal that the principal electric field gradient component, \(V_{zz} \), is tilted about 20° away from the boron−phosphorus director. These results explain the strong B···P distance dependence of the quadrupolar coupling constant. They may also relate to the fact that it is not necessary to assume a linear orientation of H₂ in the reactive pocket of the FLP for the understanding of the mechanism of the dihydrogen activation.

\[\begin{align*}
\Delta\sigma &= 54 \text{ ppm, } \eta_p = 0.56 \\
& \text{ and a } J \text{ coupling anisotropy of } 334 \text{ Hz (coincidence of the dipolar and } J \text{ coupling tensors is assumed). In panel c, the best agreement between simulation and experiment is obtained by assuming a B···P distance of 2.038 Å, the experimentally determined } 31\text{P CSA parameters, and a } J \text{ coupling anisotropy of } 219 \text{ Hz.}
\end{align*} \]

CONCLUSIONS

Solid-state NMR techniques are established for the structural characterization of frustrated Lewis pairs (FLPs), especially for investigating the interactions between the Lewis acid and base functionalities. \(^{11} \text{B} \) chemical shifts and quadrupolar coupling parameters can be interpreted in terms of the strength of the interaction between the Lewis acid and base functionality: the stronger this interaction, the lower are the \(^{11} \text{B} \) isotropic chemical shifts and the smaller is the \(^{11} \text{B} \) quadrupolar coupling constant. The latter result is supported by DFT calculations of electric field gradients on a GGA level for single molecules in the gas phase, which are in excellent agreement with experimentally obtained values. These DFT calculations reveal that the principal electric field gradient component, \(V_{zz} \), is tilted about 20° away from the boron−phosphorus director. These results explain the strong B···P distance dependence of the quadrupolar coupling constant. They may also relate to the fact that it is not necessary to assume a linear orientation of H₂ in the reactive pocket of the FLP for the understanding of the mechanism of the dihydrogen activation.

\[\begin{align*}
\Delta\sigma &= 54 \text{ ppm, } \eta_p = 0.56 \\
& \text{ and a } J \text{ coupling anisotropy of } 334 \text{ Hz (coincidence of the dipolar and } J \text{ coupling tensors is assumed). In panel c, the best agreement between simulation and experiment is obtained by assuming a B···P distance of 2.038 Å, the experimentally determined } 31\text{P CSA parameters, and a } J \text{ coupling anisotropy of } 219 \text{ Hz.}
\end{align*} \]

REFERENCES