Mean-field analysis of the majority-vote model
broken-ergodicity steady state

http://www.producao.usp.br/handle/BDPI/49704

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Mean-field analysis of the majority-vote model broken-ergodicity steady state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1742-5468/2012/07/P07003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 143.107.180.158
The article was downloaded on 06/08/2012 at 19:49

Please note that terms and conditions apply.
Mean-field analysis of the majority-vote model broken-ergodicity steady state

Paulo F C Tilles and José F Fontanari

Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos SP, Brazil
E-mail: paulo.tilles@ursa.ifsc.usp.br and fontanari@ifsc.usp.br

Received 1 March 2012
Accepted 10 June 2012
Published 6 July 2012

Online at stacks.iop.org/JSTAT/2012/P07003
doi:10.1088/1742-5468/2012/07/P07003

Abstract. We study analytically a variant of the one-dimensional majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors’ opinions. The individuals are fixed at the sites of a ring of size L and can interact with their nearest neighbors only. The interesting feature of this model is that it exhibits an infinity of spatially heterogeneous absorbing configurations for $L \to \infty$ whose statistical properties we probe analytically using a mean-field framework based on decomposition of the L-site joint probability distribution into the n-contiguous-site joint distributions, the so-called n-site approximation. To describe the broken-ergodicity steady state of the model we solve analytically the mean-field dynamic equations for arbitrary time t in the cases $n = 3$ and 4. The asymptotic limit $t \to \infty$ reveals the mapping between the statistical properties of the random initial configurations and those of the final absorbing configurations. For the pair approximation ($n = 2$) we derive that mapping using a trick that avoids solving the full dynamics. Most remarkably, we find that the predictions of the four-site approximation reduce to those of the three-site one in the case of expectations involving three contiguous sites. In addition, those expectations fit the simulation data perfectly and so we conjecture that they are in fact the exact expectations for the one-dimensional majority-vote model.

Keywords: phase transitions into absorbing states (theory), ergodicity breaking (theory), interacting agent models, stochastic processes
1. Introduction

A desirable property of a model for social behavior, or for complex systems in general, is the presence of a nontrivial steady state characterized by infinitely many equilibrium points in the thermodynamic limit. This was the main appeal of the mean-field spin-glass models used widely since the 1980s to study associative memory [1], prebiotic evolution [2], ecosystem organization [3], and social systems [4], to name just a few of the areas impacted by the spin-glass approach to model complex systems [5].

Models of social dynamics, however, are typically defined through the specification of the dynamic rules that govern the interactions between agents [6] and so they are not amenable to analysis using tools borrowed from the equilibrium statistical mechanics of disordered systems. Nevertheless, the display of a steady state characterized by a multitude of locally stable and spatially inhomogeneous configurations remains a celebrated feature of this class of model, whose paradigm is Axelrod’s model [7], since this can explain the diversity of cultures or opinions observed in human societies. Axelrod’s model is attractive from the statistical physics perspective because it exhibits a nonequilibrium...
phase transition which separates the spatially homogeneous (mono-cultural) from the heterogeneous (multicultural) regimes [8]–[10].

More recently, a long-familiar model of lattice statistical physics—the majority-vote model [11, 12]—was revisited in the context of social dynamics models [13, 14]. In fact, the majority-vote model is a lattice version of the classic frequency bias mechanism for opinion change [19], which assumes that the number of people holding an opinion is the key factor for an agent to adopt that opinion, i.e., people have a tendency to espouse opinions that are more common in their social environment. The variant of the majority-vote model considered in those studies includes the state of the target site (the voter) in the reckoning of the majority (hence we refer to the model as extended majority-vote model), which happens to be the variant originally proposed in the physics literature [11, 12]. This fact is solely responsible for the existence of an infinity of heterogeneous absorbing configurations whose statistical properties were thoroughly studied via simulations in the case of a two-dimensional lattice [14]. Moreover, the non-linearity of the transition probabilities resulting from the inclusion of the voter opinion in the majority reckoning makes the model not exactly solvable, in contrast to the voter model for which the transition probabilities are linear [15].

Many interesting variants of the one-dimensional majority-vote model have been considered in the literature. For instance, some variants separate the individuals into groups of fixed sizes and apply the majority-vote rule to update the opinion of the entire group simultaneously [16]. Others differentiate the groups a priori by introducing a group-specific bias used to determine the group opinion in the case of ties [17]. Another variant of interest is the non-conservative voter model for which the probability that a voter changes its opinion depends non-linearly on the fraction of disagreeing neighbors [18]. In particular, this variant reduces to the model we study in this paper in the case where the voter changes opinion solely when confronted by a unanimity of opposite-opinion neighbors. All these variants of the majority-vote rule model have been studied via simulations or within the single-site mean-field framework, except for the non-conservative variant which was examined within the pair approximation as well [18]. Here we show that the single-site and pair approximations yield incorrect predictions for all statistical measures of the steady states and argue that the three-site and four-site approximations yield the exact results for measures involving up to three contiguous sites of the chain.

In this contribution we study analytically the one-dimensional version of the extended majority-vote model, which is described in section 2. Our goal was to understand how the multiple-cluster steady state of the model could be described within the mean-field approach (section 3). We find that the signature of the ergodicity breaking is the appearance of an infinity of attractive fixed points in the mean-field equations for the n-site approximation with $n \geq 2$. The characterization of the mean-field steady state requires the complete analytical solution of the dynamics in order to obtain the mapping between the statistical properties of the random initial configurations and those of the final absorbing configurations, except for the two-site or pair approximation for which we find a simple shortcut to that mapping, as described in section 3.2. The full solution of the dynamics is obtained for the three- and four-site approximations in sections 3.3 and 3.4, respectively. We find that these two approximation schemes yield the very same expressions for the steady-state expectations involving three contiguous sites (see equations (24), (34) and (35)) and so we conjecture that these expressions are exact. A perfect fitting of the
Mean-field analysis of the majority-vote model broken-ergodicity steady state

Simulation data by these predictions adds further support to this claim. In addition we find that the steady-state expectations involving four contiguous sites calculated within the four-site approximation fit the simulation data perfectly. However, this approximation fails to describe higher order expectations.

2. Model

The agents are fixed at the sites of a ring of length \(L \) and can interact with their nearest neighbors only. The initial configuration is chosen randomly with the opinion of each agent being specified by a random digit 1 or 0 with probabilities \(\rho_0 \) and \(1 - \rho_0 \), respectively. At each time we pick a target agent at random and then verify which is the more frequent opinion (1 or 0) among its extended neighborhood, which includes the target agent itself. The opinion of the target agent is then changed to match the corresponding majority value. We note that there are no ties in the calculation of the preponderant opinion since the extended neighborhood of any agent comprises exactly three sites. As a result, the update rule of the model is deterministic; stochasticity enters the model dynamics through the choice of the target site and in the selection of the initial configuration. The update procedure is repeated until the system is frozen in an absorbing configuration.

Although the majority-vote rule or, more generally, the frequency bias mechanism for cultural change [19] is a homogenizing assumption by which the agents become more similar to each other, the two-dimensional version of the above-described model does exhibit global polarization, i.e., a nontrivial stable multicultural regime in the thermodynamic limit [13, 17, 14]. This regime should exist in the one-dimensional version as well, since any sequence of two or more contiguous 1s (or 0s) is stable under the update rule. It should be noted that for the more popular variant of the majority-vote model, in which the state of the target site is not included in the majority reckoning, and ties are decided by choosing the opinion of the target agent at random with probability \(1/2 \), the only absorbing states in the thermodynamic limit are the two homogeneous configurations [20, 21]. As mentioned before, the inclusion of the target site in the calculation of the majority is actually the original definition of the majority-vote model as introduced in [11, 12]. Figure 1 illustrates an absorbing configuration of the extended majority-vote model together with a random configuration with the same density of 1s. The larger number of clusters (domains) observed in the random configuration is due to the possibility of isolated sites, which are unstable under the majority-vote rule.

As usual, we represent the state of the agent at site \(i \) of the ring by the binary variable \(\sigma_i = 0, 1 \) and so the configuration of the entire ring is denoted by \(\sigma \equiv (\sigma_1, \sigma_2, \ldots, \sigma_L) \). The master equation that governs the time evolution of the probability distribution \(P(\sigma, t) \) is given by

\[
\frac{d}{dt} P(\sigma, t) = \sum_i \left[W_i(\tilde{\sigma}^i) P(\tilde{\sigma}^i, t) - W_i(\sigma) P(\sigma, t) \right]
\]

(1)

where \(\tilde{\sigma}^i = (\sigma_1, \ldots, 1 - \sigma_i, \ldots, \sigma_L) \) and \(W_i(\sigma) \) is the transition rate between configurations \(\sigma \) and \(\tilde{\sigma}^i \) [20, 21]. For the one-dimensional extended majority-vote model we have

\[
W_i(\sigma) = \sigma_i (1 - \sigma_{i-1} - \sigma_{i+1}) + \sigma_{i-1} \sigma_{i+1}
\]

(2)

doi:10.1088/1742-5468/2012/07/P07003
Mean-field analysis of the majority-vote model broken-ergodicity steady state

Figure 1. Disposition of the $\sigma_i = 1$ variables in a ring with $L = 500$ sites. The inner circle (black) is an absorbing configuration of the extended majority-vote model with $\rho = 0.49$. There are 92 clusters and the largest cluster comprises 19 sites. The outer circle (blue) shows a random configuration with the same density of 1s. The total number of clusters is 255 and the largest one comprises 9 sites.

for $i = 1, \ldots, L$. The boundary conditions are such that $\sigma_0 = \sigma_L$ and $\sigma_{L+1} = \sigma_1$. To implement the n-site approximation up to $n = 4$ we need to evaluate the following expectations:

$$\frac{d}{dt} \langle \sigma_i \rangle = \langle (1 - 2\sigma_i) W_i(\sigma) \rangle,$$

$$\frac{d}{dt} \langle \sigma_i \sigma_j \rangle = 2 \langle \sigma_j (1 - 2\sigma_i) W_i(\sigma) \rangle,$$

$$\frac{d}{dt} \langle \sigma_i \sigma_j \sigma_k \rangle = 3 \langle \sigma_j \sigma_k (1 - 2\sigma_i) W_i(\sigma) \rangle,$$

$$\frac{d}{dt} \langle \sigma_i \sigma_j \sigma_k \sigma_l \rangle = 4 \langle \sigma_j \sigma_k \sigma_l (1 - 2\sigma_i) W_i(\sigma) \rangle,$$

where all indices are assumed distinct and we have introduced the notation $\langle \cdots \rangle \equiv \sum_{\sigma} \langle \cdots \rangle P(\sigma,t)$. The n-site approximation is based on the calculation of this average by replacing the full joint distribution probability $P(\sigma,t)$ by a decomposed form that depends on the order n of the approximation (see equations (8), (11), (18) and (42)). Of course, in the derivation of equations (3)–(6), which generalize trivially to an arbitrary number of sites, we have assumed translational invariance, i.e., all sites are assumed equivalent.

3. Mean-field analysis

In this section we study the one-dimensional extended majority-vote model using the well-known mean-field n-site approximation (see [22]–[25]). The basic idea behind the
Mean-field analysis of the majority-vote model broken-ergodicity steady state

n-site approximation is to rewrite the distribution $P(\sigma,t)$ in terms of elementary joint probabilities of n contiguous sites only and then derive a system of self-consistent equations for these probabilities. This key idea is expressed mathematically using the following equation which summarizes the approximation scheme:

$$P_{1|L-1}(\sigma_i | \sigma_1, \ldots, \sigma_L) = P_{1|2n-2}(\sigma_i | \sigma_{i-n+1}, \ldots, \sigma_{i+n-1})$$

(7)

where, of course, σ_i does not appear in the arguments to the right of the $|$ delimiter in these conditionals. This procedure will be illustrated in the following subsections for $n = 1$ to 4. It is interesting to note that, except for the single-site approximation $n = 1$, the states of any two sites are statistically dependent variables regardless of their positions in the ring.

3.1. The single-site approximation

This is the simplest mean-field scheme which assumes that the states of the agents at different sites are independent random variables so that

$$P(\sigma, t) = p_1(\sigma_1, t) p_1(\sigma_2, t) \cdots p_1(\sigma_L, t)$$

(8)

and so it is only necessary to calculate the one-site distribution $p_1(\sigma_i, t)$ to describe the dynamics completely. This can be done by noting that $\rho \equiv \langle \sigma_i \rangle_t = p_1(1, t)$ and using equation (3) to derive a self-consistent equation for ρ. The final result is simply

$$\dot{\rho} = \rho(-2\rho^2 + 3\rho - 1)$$

(9)

with the notation $\dot{x} = dx/dt$. We note that ρ contains the same information as the single-site probability distribution $p_1(\sigma_i)$ since $p_1(\sigma_i = 1) = \rho$ and $p_1(\sigma_i = 0) = 1 - \rho$. A straightforward stability analysis shows that there are three fixed points,

$$\rho_1 = 0, \quad \rho_2 = 1/2, \quad \rho_3 = 1,$$

(10)

with only ρ_1 and ρ_3 being stable. This means that only the homogeneous configurations are stable and so the single-site approximation completely fails to describe the steady state of the extended majority-vote model.

3.2. The pair approximation

Using equation (7) to write the full probability distribution in terms of the joint probability of two sites and omitting the time dependence we find

$$P(\sigma) = \frac{p_2(\sigma_1, \sigma_2) p_2(\sigma_2, \sigma_3) \cdots p_2(\sigma_{L-1}, \sigma_L) p_2(\sigma_L, \sigma_1)}{p_1(\sigma_1) p_1(\sigma_2) \cdots p_1(\sigma_{L-1}) p_1(\sigma_L)}$$

(11)

where $p_1(\sigma_i) = \sum_{\sigma_j} p_2(\sigma_i, \sigma_j)$. To avoid overburdening the notation we use the same notation for p_1 as used in the single-site approximation but the p_1 which appears in equation (11) is numerically distinct from that calculated in section 3.1. This simplifying convention for the notation of probabilities will be used in the following sections as well.

Within this framework, it is only necessary to calculate $p_2(\sigma_i, \sigma_{i+1})$ to describe the dynamics of the model completely. This amounts to four variables, namely $p_2(1,1), p_2(1,0), p_2(0,1)$ and $p_2(0,0)$, but use of the normalization condition and of the parity symmetry ($p_2(1,0) = p_2(0,1)$) allows us to reduce the number of independent
variables to only two. The first variable we pick is $\phi \equiv \langle \sigma_i \sigma_{i+1} \rangle = p_2(1, 1)$ which is given by equation (4) with $j = i + 1$. Next, noting that $p_2(1, 0) = p_1(1) - p_2(1, 1) = \rho - \phi$, we pick ρ, given by equation (3), as the second independent variable. Carrying out the averages in the right-hand sides of equations (3) and (4) using the decomposition ((11)) yields

$$\dot{\rho} = \frac{(\rho - \phi)^2 (2\rho - 1)}{2\rho (1 - \rho)},$$

and

$$\dot{\phi} = \frac{(\rho - \phi)^2}{1 - \rho}.$$

The steady-state condition $\dot{\phi} = \dot{\rho} = 0$ as well as the numerical integration of these equations yields $\rho = \phi$ for $t \to \infty$, with ρ determined by the value of the initial condition $\rho(t = 0) = \rho_0$ and $\phi(t = 0) = \rho_0^2$. We note that this result implies that $p_2(1, 0) = p_2(0, 1) = 0$, meaning that the number of interfaces between clusters, i.e., of contiguous sites in different states at the steady state, is not extensive. This prediction is not correct as indicated by the higher order approximations and by the simulation data. Despite this incorrect prediction, the pair approximation explains the most remarkable aspect of the extended majority-vote model, namely the ergodicity breaking reflected by the infinity of distinct absorbing configurations.

The imposition of the steady-state condition is not sufficient to determine the equilibrium solution $\bar{\rho} = \bar{\phi}$ because there is a continuum of fixed points characterized by the function $\bar{\rho}(\rho_0)$. In order to obtain this function or map, we revert to the original variable $x \equiv p_2(1, 0) = \rho - \phi$, and rewrite equations (12) and (13) as

$$\dot{\rho} = \frac{x^2 (2\rho - 1)}{2\rho (1 - \rho)},$$

$$\dot{x} = -\frac{x^2}{2\rho (1 - \rho)}$$

from which we can immediately obtain the integral equation

$$\int_{x_0}^{x(t)} dx' = -\int_{\rho_0}^{\rho(t)} \frac{d\rho'}{2\rho' - 1}.$$

As the stationary regime is obtained in the limit $t \to \infty$, we define $\bar{\rho}(\rho_0) \equiv \rho(t \to \infty)$. In addition, using $x_0 = \rho_0(1 - \rho_0)$ and $x(t \to \infty) = 0$ (steady-state condition) we find

$$\bar{\rho}(\rho_0) = \frac{1}{2}[1 + (2\rho_0 - 1)e^{2\rho_0(1 - \rho_0)}].$$

This equation is identical to that derived for the non-conservative voter model in the case where the voter changes opinion only when confronted by a unanimity of opposite-opinion neighbors [18]. Figure 2 shows this steady-state solution together with the results of the simulations for a ring with $L = 10^4$ sites. Despite the incorrect prediction ($\dot{\phi} = \dot{\rho}$), equation (17) yields a remarkably good quantitative agreement with the density ρ obtained from the simulations. However, as we will show next, the (supposedly) exact expression for $\bar{\rho}$ is much simpler than equation (17).
3.3. The three-site approximation

In this scheme the decomposition of $P(\sigma)$ is

$$ P(\sigma) = \frac{p_3(\sigma_1, \sigma_2, \sigma_3) p_3(\sigma_2, \sigma_3, \sigma_4) \cdots p_3(\sigma_L, \sigma_1, \sigma_2)}{p_2(\sigma_1, \sigma_2) p_2(\sigma_2, \sigma_3) \cdots p_2(\sigma_L, \sigma_1)}$$

where $p_2(\sigma_i, \sigma_{i+1}) = \sum_{\sigma_i} p_3(\sigma_i, \sigma_{i+1}, \sigma_{i+2})$. The goal here is to calculate the nine probability values $p_3(\sigma_i, \sigma_{i+1}, \sigma_{i+2})$ with $\sigma_k = 0, 1$. As before, use of the normalization condition and of the parity symmetry give us six variables to be determined using appropriate linear combinations of equations (3)–(6). We choose the following variables

$$ x_0 = p_3(0, 0, 0), \quad x_1 = p_3(1, 0, 0), \quad x_2 = p_3(1, 1, 0), $$

$$ x_{1C} = p_3(0, 1, 0), \quad x_{2C} = p_3(1, 0, 1), \quad x_3 = p_3(1, 1, 1) $$

which are given by the expectations $x_1 = \langle \sigma_1 \rangle - \langle \sigma_1 \sigma_{i+1} \rangle$, $x_2 = \langle \sigma_1 \sigma_{i+1} \rangle - \langle \sigma_1 \sigma_{i+1} \sigma_{i+2} \rangle$, $x_3 = \langle \sigma_1 \sigma_{i+1} \sigma_{i+2} \rangle$, and so on.

3.3.1. Mean-field equations. Evaluating the averages in equations (3)–(6) using the decomposition (18) yields

$$ \dot{x}_1 = \frac{1}{3} \frac{x_{1C}}{x_{1C} + x_2} (x_{2C} - x_1), \quad \dot{x}_2 = \frac{1}{3} \frac{x_{2C}}{x_{2C} + x_1} (x_{1C} - x_2), $$

$$ \dot{x}_{1C} = -\frac{1}{3} \frac{x_{1C}}{x_{2C} + x_1} (3x_{2C} + x_1), \quad \dot{x}_{2C} = \frac{1}{3} \frac{x_{2C}}{x_{1C} + x_2} (3x_{1C} + x_2), $$

$$ \dot{x}_0 = \frac{1}{3} \frac{x_{1C}}{x_{1C} + x_2} (x_{1C} + 2x_1 + x_2), \quad \dot{x}_3 = \frac{1}{3} \frac{x_{2C}}{x_{2C} + x_1} (x_{2C} + x_1 + 2x_2). $$

The steady state is given by $x_{1C} = x_{2C} = 0$, i.e., $p_3(0, 1, 0) = p_3(1, 0, 1) = 0$, which, in contrast to the situation we found in the analysis of the pair approximation, reflects the
physical requirement that absorbing configurations cannot exhibit isolated sites. As we are still left with four undetermined variables after applying the steady-state condition, we need an alternative method to characterize the steady state. Somewhat surprisingly, in this case we will be able to solve the dynamics analytically, a feat that seems unfeasible in the case of the pair approximation.

In fact, what makes the system of non-linear coupled equation (20) solvable is the observation that \(y \equiv x_{1C} + x_{2C} + x_1 = p_2(1, 0) \), so the denominators in the rhs of all the equations are identical. In addition, we note that \(x_0 \) does not affect the other five variables so we can first solve for them and then return to the equation for \(x_0 \) to complete the solution of the system (20).

Introducing the auxiliary variables \(z_1 = x_{1C} + x_{2C}, \ z_2 = x_{1C} - x_{2C} \) and recalling that \(\rho = x_1 + x_2 + x_{2C} + x_3 \) we reduce equation (20) to

\[
\dot{y} = -\frac{z_1}{3}, \quad \dot{z}_1 = -\frac{z_1}{3} - \frac{z_1^2 - z_2^2}{3y}, \quad \dot{z}_2 = -\frac{z_2}{3}, \quad \dot{\rho} = -\frac{z_2}{3} \tag{21}
\]

where we have omitted the equation for \(x_0 \). The last two equations can be immediately solved and yield

\[
z_2(t) = \rho_0 \left(1 - \rho_0 \right) \left(1 - 2\rho_0 \right) e^{-(1/3)t}, \tag{22}
\]

\[
\rho(t) = \rho_0^2 \left(3 - 2\rho_0 \right) + \rho_0 \left(1 - \rho_0 \right) \left(1 - 2\rho_0 \right) e^{-(1/3)t}. \tag{23}
\]

Hence in the asymptotic limit \(t \to \infty \) we obtain

\[
\bar{\rho}(\rho_0) = \rho_0^2 (3 - 2\rho_0) \tag{24}
\]

and \(\bar{z}_2 = 0 \), as expected, since both \(x_{1C} \) and \(x_{2C} \) vanish at the steady state. For \(\rho_0 \to 0 \) or \(\rho_0 \to 1 \) the pair approximation estimate of \(\bar{\rho} \) given by equation (17) reduces to equation (24) in a first order approximation in \(\rho_0 \) or \(1 - \rho_0 \). Equation (24) describes the simulation data perfectly as illustrated in figure 3 and, as already mentioned, we believe it gives the exact value for the steady-state density of 1s of the one-dimensional majority-vote model.

The explicit calculation of the remaining two unknowns \(y \) and \(z_1 \) using equation (21) is not too involved and their knowledge will allow us to evaluate other quantities of interest, such as \(\phi \) and other high-order correlations. We begin by introducing the auxiliary variables \(\omega_1 = z_1/y \) and \(\omega_2 = z_2/y \) which satisfy the equations

\[
\dot{\omega}_1 = -\frac{1}{3}\omega_1 + \frac{1}{3}\omega_2, \quad \dot{\omega}_2 = -\frac{1}{3}\omega_2 + \frac{1}{3}\omega_1\omega_2. \tag{25}
\]

Next, we define \(\alpha = \omega_1^2 - \omega_2^2 \) which is given by \(\dot{\alpha} = -2\alpha/3 \) and so

\[
\alpha(t) = \alpha_0 e^{-2t/3} \tag{26}
\]

with \(\alpha_0 = 4\rho_0(1 - \rho_0) \). At this point we can readily write an explicit equation for \(z_1 \) in terms of \(y \),

\[
z_1(t) = e^{-1/3} \sqrt{z_0^2 + \alpha_0 y^2(t)}. \tag{27}
\]
Figure 3. The solid lines are the analytical results for the steady-state measures obtained with the four-site approximation while the symbols represent the results of the simulations for a ring of size $L = 10^4$ and 10^6 independent samples. The convention is (from top to bottom) $\overline{\rho}(\rho_0)$ (circles), $\bar{\phi}(\rho_0)$ (triangles), $\psi(\rho_0)$ (squares) and $\bar{\omega}_1(\rho_0)$ (upside down triangles). The upper three curves are identical for the three-site approximation.

where we used the fact that $z_1 \geq 0$ and that z_2 is given by equation (22). Now, inserting this expression in the equation for y (see equation (21)) results in an easily solvable integral,

$$
\int_{y_0}^{y} \frac{dy'}{\sqrt{m_0^2 + y'^2}} = \log \left(\frac{y + \sqrt{m_0^2 + y^2}}{y_0 + \sqrt{m_0^2 + y_0^2}} \right),
$$

with $m_0^2 = z_0^2/\alpha_0$ and $y_0 = \rho_0(1 - \rho_0)$. Finally, carrying out the integration yields

$$
y(t) = \frac{1}{2} \left(y_0 + \sqrt{m_0^2 + y_0^2} \right) \exp[-\alpha_0(1 - e^{-t/3})] - \frac{1}{2} \frac{m_0^2}{y_0 + \sqrt{m_0^2 + y_0^2}} \exp[\alpha_0(1 - e^{-t/3})].
$$

In the limit $t \to \infty$ this equation reduces to

$$
\bar{y}(\rho_0) = \rho_0 (1 - \rho_0) \cosh \left[2 \sqrt{\rho_0 (1 - \rho_0)} \right] - \frac{1}{2} \sqrt{\rho_0 (1 - \rho_0)} \sinh \left[2 \sqrt{\rho_0 (1 - \rho_0)} \right],
$$

which exhibits the symmetry $\bar{y}(\rho_0) = \bar{y}(1 - \rho_0)$.

To conclude the solution of the system of equation (20) we need now to determine x_0. The easiest way to do this is to rewrite the equation for x_0 in (20) as

$$
\dot{x}_0 = -2\dot{y} + \frac{1}{2} \left(\dot{z}_1 - 3 \dot{z}_2 \right)
$$

which can be immediately integrated to yield

$$
x_0(t) = x_0(0) - 2[y(t) - y_0] + \frac{1}{2} [z_1(t) - z_1(0)] - \frac{3}{2} [z_2(t) - z_2(0)].
$$
In the asymptotic limit $x_0(t \to \infty) \equiv \bar{\psi}_{-1}$ we find
\begin{equation}
\bar{\psi}_{-1} (\rho_0) = (1 + 2 \rho_0) (1 - \rho_0)^2 - 2 \bar{y} (\rho_0). \tag{33}
\end{equation}

3.3.2. Simple steady-state expectations.

At this stage we should be able to express any quantity characterizing the ring configuration at time t in terms of the time-dependent variables ρ, z_2, y and z_1. However, we will focus here only on the steady-state regime ($t \to \infty$) for which only ρ and y contribute since $\bar{z}_1 = \bar{z}_2 = 0$.

The most interesting expectations are those whose time evolutions are defined by equations (3)–(6) in the case where the indices are associated to contiguous sites. We begin with $\phi = \langle \sigma_i \sigma_{i+1} \rangle = x_2 + x_3$, and recall that $\rho = \langle \sigma_i \rangle = x_1 + x_2 + x_{2C} + x_3$ and $y = x_1 + x_{2C}$ so that $\phi = \rho - y$. Then at the steady state we find
\begin{equation}
\bar{\phi} (\rho_0) = \rho_0^2 (3 - 2 \rho_0) - \bar{y} (\rho_0). \tag{34}
\end{equation}

Next we note that $\psi \equiv \langle \sigma_i \sigma_{i+1} \sigma_{i+2} \rangle = x_3 = \rho - 2 y + (z_1 + z_2)/2$ and so
\begin{equation}
\bar{\psi} (\rho_0) = \rho_0^2 (3 - 2 \rho_0) - 2 \bar{y} (\rho_0). \tag{35}
\end{equation}

These two steady-state expectations, which are shown in figure 3, describe the simulation data perfectly. Expectations involving more than three contiguous sites must be decomposed so as to be described by the three-site approximation. Of particular interest is the four-site expectation $w_1 \equiv \langle \sigma_i \sigma_{i+1} \sigma_{i+2} \sigma_{i+3} \rangle = p_4(1,1,1,1)$, which in the three-site approximation scheme becomes $w_1 = p_3^2(1,1,1)/p_2(1,1)$, so that $\bar{w}_1 (\rho_0) = \bar{\psi}^2 / \phi$ at the steady state. In the scale of figure 3 this result is indistinguishable from the simulation data or from their counterpart calculated with the four-site approximation (see figure 4).

For completeness, let us calculate $\phi_{-1} \equiv p_2(0,0) = x_1 + x_0$ at the steady state. Since x_0 is given by equation (33) and $x_1 = y - (z_1 - z_2)/2$ we find
\begin{equation}
\phi_{-1} (\rho_0) = (1 + 2 \rho_0) (1 - \rho_0)^2 - \bar{y} (\rho_0). \tag{36}
\end{equation}

The fact that the dynamics is invariant to the interchange of 1s and 0s provided that we change ρ_0 to $1 - \rho_0$ is expressed by the easily verifiable identities $\bar{\rho}(1 - \rho_0) = 1 - \bar{\rho}(\rho_0)$, $\bar{\phi}(\rho_0) = \bar{\phi}_{-1}(1 - \rho_0)$ and $\bar{\psi}(\rho_0) = \bar{\psi}_{-1}(1 - \rho_0)$. Of course, this symmetry holds for all orders.
n of the n-site approximation scheme and we will resort to it to abbreviate the calculations of the four-site approximation in section 3.4.

3.3.3. Probability of clusters of length m. A more informative quantity is the probability of finding a cluster of $m > 1$ sites in an absorbing configuration. There are only two possibilities for such a cluster: (a) a site in state $\sigma_i = 0$ followed by m sites in states $\sigma_{i+1} = \sigma_{i+2} \cdots \sigma_{i+m} = 1$ which are then followed by another site in state $\sigma_{i+m+1} = 0$ and (b) a site in state $\sigma_i = 1$ followed by m sites in states $\sigma_{i+1} = \sigma_{i+2} \cdots \sigma_{i+m} = 0$ which are then followed by another site in state $\sigma_{i+m+1} = 1$. The probability of these configurations happening in an absorbing configuration can be easily derived using the decomposition (18) and yields

$$P^{(3)}_{\text{cl}} (m) = \frac{p_3^2 (0, 1, 1)}{p_2 (1, 1)} \left[\frac{p_3 (1, 1, 1)}{p_2 (1, 1)} \right]^{m-2} + \frac{p_3^2 (1, 0, 0)}{p_2 (0, 0)} \left[\frac{p_3 (0, 0, 0)}{p_2 (0, 0)} \right]^{m-2}. \quad (37)$$

To rewrite this expression in terms of more elementary steady-state quantities we recall that $p_3(1, 0, 0) = p_2(0, 0) - p_3(0, 0, 0)$ and $p_3(0, 1, 1) = p_2(1, 1) - p_3(1, 1, 1)$ so that

$$P^{(3)}_{\text{cl}} (\rho_0, m) = \frac{(\phi - \bar{\psi})^2}{\phi} \left(\frac{\bar{\psi}}{\phi} \right)^{m-2} + \frac{(\phi_{-1} - \bar{\psi}_{-1})^2}{\phi_{-1}} \left(\frac{\bar{\psi}_{-1}}{\phi_{-1}} \right)^{m-2}. \quad (38)$$

The three-site approximation estimate for the probability of finding clusters of length m given by this equation is presented in figures 5 and 6 together with the results of the simulations and the estimate of the four-site approximation. We will postpone the discussion of the physical implications of the results presented in these figures to section 4.

3.3.4. Two-site correlations. Knowledge of the two-site correlations defined by

$$\text{corr} (\sigma_i, \sigma_{i+j}) = \langle \sigma_i \sigma_{i+j} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+j} \rangle \quad (39)$$

is very useful to determine the validity of the approximations. Since all sites are equivalent we have $\langle \sigma_i \rangle = \langle \sigma_{i+j} \rangle = \bar{\rho} (\rho_0)$ regardless of the order n of the approximation. Some two-site expectations follow straightforwardly from the previous results, namely $\langle \sigma_i \sigma_j \rangle_{(3)} = \bar{\rho}$, $\langle \sigma_i \sigma_{i+1} \rangle_{(3)} = \bar{\phi}$ and $\langle \sigma_i \sigma_{i+2} \rangle_{(3)} = \bar{\psi}$. The first nontrivial two-site expectation is

$$\langle \sigma_i \sigma_{i+3} \rangle_{(3)} = \sum_{\sigma_{i+1}, \sigma_{i+2}} P (\sigma_i = 1, \sigma_{i+1}, \sigma_{i+2}, \sigma_{i+3} = 1)$$

$$= \frac{\bar{\psi}^2}{\phi} + \frac{(\phi_{-1} - \bar{\psi}_{-1})^2}{\phi_{-1}} \quad (40)$$

where we have decomposed the four-site probability in terms of the elementary three-site probabilities. Note that the sum has two non-vanishing terms only, since $P(1, 0, 1, 1) = P(1, 1, 0, 1) = 0$. Applying the very same procedure to calculate $\langle \sigma_i \sigma_{i+4} \rangle$ yields

$$\langle \sigma_i \sigma_{i+4} \rangle_{(3)} = \left(\frac{\bar{\psi}}{\phi} \right)^2 \bar{\psi} + 2 \left(\frac{\phi_{-1} - \bar{\psi}_{-1}}{\phi_{-1}} \right)^2 \frac{\bar{\psi}_{-1}}{\phi_{-1}}. \quad (41)$$

In this case only four terms give nonzero contributions to the sum over the middle sites. Equations (40) and (41) clarify a fact that is often unappreciated, namely, regardless of

doi:10.1088/1742-5468/2012/07/P07003 12
Figure 5. Probability of finding clusters of length $m = 2, 13, 15$ and 50 as indicated in the figures. The dashed curves are the results of the three-site approximation and the solid curves the results of the four-site approximation. The filled circles are the simulation data for a ring of size $L = 10^4$ and 10^6 independent samples; the error bars are smaller than the symbol sizes. The transition from a unimodal to a bimodal distribution takes place at $m = 13$.

their position in the ring, the sites are always treated as statistically dependent variables within the n-site approximation scheme for $n > 1$.

3.4. The four-site approximation

In the four-site approximation framework the decomposition of $P(\sigma)$ is given by the prescription

$$P(\sigma) = \frac{p_4(\sigma_1, \sigma_2, \sigma_3, \sigma_4) p_4(\sigma_2, \sigma_3, \sigma_4, \sigma_5) \cdots p_4(\sigma_L, \sigma_1, \sigma_2, \sigma_3)}{p_3(\sigma_1, \sigma_2, \sigma_3) p_3(\sigma_2, \sigma_3, \sigma_4) \cdots p_3(\sigma_L, \sigma_1, \sigma_2)}$$

(42)

where $p_3(\sigma_i, \sigma_{i+1}, \sigma_{i+2}) = \sum_{\sigma_{i+3}} p_4(\sigma_i, \sigma_{i+1}, \sigma_{i+2}, \sigma_{i+3})$. Full determination of the joint probability $p_4(\sigma_i, \sigma_{i+1}, \sigma_{i+2}, \sigma_{i+3})$ requires the calculation of 16 unknowns, but the normalization condition and the parity symmetry allow us to reduce this number to the
Figure 6. Probability of finding clusters of length m for fixed $\rho_0 = 0.2$ (left panel) and $\rho_0 = 0.5$ (right panel). The three-site approximation (dashed curves) and the four-site approximation (solid lines connecting the symbols) give results which are indistinguishable from the simulation data (filled circles) on the scale of the figure for $\rho_0 = 0.2$; only for very large clusters can one see a noticeable discrepancy between the data and the results of the three-site approximation for $\rho_0 = 0.5$. For the purpose of comparison, the solid curves exhibit the results for randomly assembled configurations. The simulations were carried out for a ring of size $L = 10^4$ and 10^6 independent samples.

following ten unknowns:

$$
\begin{align*}
 w_{-1} &= p_4(0,0,0,0), \\
 x_1 &= p_4(1,0,0,0), \\
 x_2 &= p_4(0,1,0,0), \\
 y_1 &= p_4(1,1,0,0), \\
 y_2 &= p_4(1,0,1,0), \\
 y_3 &= p_4(1,0,0,1), \\
 y_4 &= p_4(0,1,1,0), \\
 z_1 &= p_4(1,1,1,0), \\
 z_2 &= p_4(1,1,0,1), \\
 w_1 &= p_4(1,1,1,1).
\end{align*}
$$

As usual, equations (3)–(6) allow us to derive the equations for all these unknowns. For example, $z_1 = \langle \sigma_i \sigma_{i+1} \sigma_{i+2} \rangle - \langle \sigma_i \sigma_{i+1} \rangle \langle \sigma_{i+2} \rangle$, $w_1 = \langle \sigma_i \sigma_{i+1} \sigma_{i+2} \sigma_{i+3} \rangle$, and so on.

3.4.1 Mean-field equation. Evaluation of the averages in equations (3)–(6) using the decomposition (42) results in the following set of equations:

$$
\begin{align*}
 \dot{w}_{-1} &= \frac{x_2}{2} \left(1 + \frac{x_1}{x_2 + y_1}\right), \\
 \dot{x}_1 &= \frac{1}{4} \left[\frac{x_2}{x_2 + y_1} (y_3 - x_1) + y_2 \right], \\
 \dot{x}_2 &= \frac{1}{4} \left(\frac{y_2^2}{y_2 + z_2} - \frac{x_2 y_2}{x_2 + y_2} - x_2 \right), \\
 \dot{y}_1 &= \frac{y_2}{4} \left(\frac{x_2}{x_2 + y_2} + \frac{z_2}{y_2 + z_2} \right), \\
 \dot{y}_2 &= -\frac{y_2}{4} \left(\frac{y_2^2}{x_2 + y_2} + \frac{y_2}{y_2 + z_2} + 2 \right), \\
 \dot{y}_3 &= \frac{1}{2} \frac{x_2 y_3}{x_2 + y_1}, \\
 \dot{y}_4 &= -\frac{1}{2} \frac{y_4 z_2}{y_1 + z_2}, \\
 \dot{z}_1 &= \frac{1}{4} \left[\frac{z_2}{y_1 + z_2} (y_4 - z_1) + y_2 \right], \\
 \dot{z}_2 &= \frac{1}{4} \left(\frac{y_2^2}{x_2 + y_2} - \frac{y_2 z_2}{y_2 + z_2} - z_2 \right), \\
 \dot{w}_1 &= \frac{z_2}{2} \left(1 + \frac{z_1}{y_1 + z_2}\right).
\end{align*}
$$

doi:10.1088/1742-5468/2012/07/P07003
As the variables \(w_{-1} \) and \(w_1 \) do not affect the other variables and the consistency conditions
\[
\sum_{\sigma_{x_1}, \sigma_{x_2}} p_4 (1, 1, \sigma_{x_1}, \sigma_{x_2}) = \sum_{\sigma_{x_1}, \sigma_{x_2}} p_4 (\sigma_{x_1}, 1, 1, \sigma_{x_2}),
\]
\[
\sum_{\sigma_{x_1}, \sigma_{x_2}} p_4 (1, 0, \sigma_{x_1}, \sigma_{x_2}) = \sum_{\sigma_{x_1}, \sigma_{x_2}} p_4 (\sigma_{x_1}, 1, 0, \sigma_{x_2})
\]
result in the simple relations
\[
y_1 + z_2 = y_4 + z_1, \quad x_1 + y_3 = x_2 + y_1,
\]
from where we can eliminate \(x_2 \) and \(y_1 \), we are actually left with a system of six coupled equations for the variables \(x_1, y_1, y_3, y_4, z_1 \) and \(z_2 \). (We note that equations (45a) and (45b) merely exhibit alternative ways of expressing \(p_2 (1, 1) \) and \(p_2 (1, 0) \), respectively.)

Introducing the linear transformation
\[
\alpha_{\pm} = y_1 \pm z_1, \quad \eta_{\pm} = y_2 \pm z_2, \quad \delta_{\pm} = y_3 \pm x_1,
\]
we obtain the closed set of equations
\[
\dot{\alpha}_+ = \frac{1}{4} \eta_- - \frac{1}{4} \left[\eta_+ + \frac{\alpha_-}{\alpha_+} (\eta_+ - \eta_-) \right],
\]
\[
\dot{\alpha}_- = -\frac{1}{4} (2\eta_+ - \eta_-), \quad \dot{\eta}_+ = -\frac{1}{4} \left[\eta_+^2 + 4\eta_+ \eta_- + \eta_-^2 - \frac{(\eta_+ + \eta_-)^2}{\alpha_+ - \eta_+ - \delta_+} \right],
\]
\[
\dot{\delta}_+ = \frac{1}{4} (\alpha_+ + \eta_- - \delta_+), \quad \dot{\delta}_- = \frac{1}{4} \left[\alpha_+ - \eta_+ - \delta_+ + \frac{\delta_-}{\delta_+} (2\alpha_+ - 2\delta_+ - \eta_+ + \eta_-) \right].
\]
Although this system might look formidable, its solution is not very involved. We begin by eliminating \(\eta_- \) in the equations for \(\alpha_+ \) and \(\delta_+ \) in order to get
\[
\delta_+ + \frac{1}{4} \delta_- = \dot{\alpha}_+ + \frac{1}{4} \alpha_+.
\]
The auxiliary variable \(f = \alpha_+ - \delta_+ \) satisfies \(\dot{f} = -\frac{1}{4} f \), whose solution is
\[
f(t) = (\alpha_{+0} - \delta_{+0}) e^{-t/4} = \rho_0 (1 - \rho_0) (2\rho_0 - 1) e^{-t/4}.
\]
This explicit solution for \(f \) in terms of \(\rho_0 \) and \(t \) allows us to consider the equations for \(\eta_{\pm} \) as a closed subset of equations which can be solved as follows. The change of variables
\[
\omega = \frac{\eta_+ + \eta_-}{\eta_+}, \quad \gamma = \frac{\eta_+ + \eta_-}{f - \eta_+}
\]
leads to the much simpler equations
\[
\dot{\omega} = -\frac{1}{4} \omega + \frac{1}{8} \omega^2 + \frac{1}{8} \gamma \omega, \quad \dot{\gamma} = -\frac{1}{4} \gamma - \frac{1}{8} \gamma^2 - \frac{1}{8} \gamma \omega
\]
which imply that \(d(\gamma \omega)/dt = -\frac{1}{2} \gamma \omega \). Hence,
\[
(\gamma (t) \omega (t)) = -4 \rho_0 (1 - \rho_0) e^{-t/2}
\]
where we have used \(\gamma (t = 0) = -2 \rho_0 \) and \(\omega (t = 0) = 2 (1 - \rho_0) \). Inserting this expression back into the equation for \(\gamma \) we obtain a Riccati equation, whose exact solution is [26]
\[
\gamma (t) = -2 \sqrt{\rho_0 (1 - \rho_0)} e^{-t/4} \tanh \left[\Xi (\rho_0, t) \right]
\]
with
\[\Xi (\rho_0, t) = \tanh^{-1} \left(\frac{\rho_0}{1 - \rho_0} \right)^{1/2} + \sqrt{\rho_0 (1 - \rho_0)} (e^{-t/4} - 1). \] (55)

Since we have found explicit solutions for \(\gamma \) and \(\omega \) we can easily revert to the original variables \(\eta_+ = f \gamma / (\gamma + \omega) \) and \(\eta_- = f \gamma / (\omega - 1) / (\gamma + \omega) \) so as to write
\[\eta_+ = -\rho_0 (1 - \rho_0) (2\rho_0 - 1) e^{-t/4} \sinh^2 [\Xi (\rho_0, t)] \] (56)
and
\[\eta_- = -\eta_+ - [\rho_0 (1 - \rho_0)]^{3/2} (2\rho_0 - 1) e^{-t/4} \sinh [2\Xi (\rho_0, t)]. \] (57)

At this point we can immediately obtain \(\alpha_+ \), given in equation (48), through a brute-force integration
\[\alpha_+ (t) = \frac{1}{2} \rho_0 (1 - \rho_0) (2\rho_0 - 1) e^{-t/4} \]
\[+ \frac{1}{2} \rho_0 (1 - \rho_0) (2 - e^{-t/4}) \cosh \left[2\sqrt{\rho_0 (1 - \rho_0)} (1 - e^{-t/4}) \right] \]
\[- \frac{1}{2} \sqrt{\rho_0 (1 - \rho_0)} [1 - 2\rho_0 (1 - \rho_0) e^{-t/4}] \sinh \left[2\sqrt{\rho_0 (1 - \rho_0)} (1 - e^{-t/4}) \right]. \] (58)

Note that \(\alpha_+ (t \to \infty) = \bar{\gamma}(\rho_0) \) calculated within the three-site approximation (see equation (30)). Together with the expression for \(f \) given in equation (50), this result allows us to obtain \(\delta_+ = \alpha_+ - f \). Hence, to complete the solution of the system (48) we need now to determine \(\alpha_- \) and \(\delta_- \). This is achieved as follows.

The auxiliary variable \(\chi = \alpha_- / \alpha_+ \) satisfies
\[\dot{\chi} = -\frac{1}{4} (1 + \chi) \frac{\eta_+}{\alpha_+}, \] (59)
whose solution is simply
\[\chi (t) = 2 (1 - \rho_0) e^{-G(t)} - 1 \] (60)
where we have used \(\chi (t = 0) = 1 - 2\rho_0 \) and
\[G (t) = \frac{1}{4} \int_0^t \frac{\eta_+ (t')}{\alpha_+ (t')} \, dt'. \] (61)

Hence \(\alpha_- (t) = \alpha_+ (t) \chi (t) \) where the factors in the product are given by equations (58) and (60). To solve for the last unknown \(\delta_- \) we resort to a shortcut. Considering the definitions of \(\delta_- \) and \(\alpha_- \) in terms of the elementary probabilities given in (43) we see that they are related by the transformation \(1 \leftrightarrow 0 \) and so \(\delta_- (t, \rho_0) = \alpha_- (t, 1 - \rho_0) \). This concludes the solution of the system (48), but we note that since we are not able to solve analytically the integral in equation (61) the situation here is not as satisfying as for the three-site approximation. Most fortunately, this integral does not appear in the expressions for the expectations involving less than four sites, as we will see next.

3.4.2. Calculation of \(\rho, \phi, \psi \text{ and } w_1 \). Knowledge of these expectations will allow us to compare the four-site approximation predictions with those of the three-site

doi:10.1088/1742-5468/2012/07/P07003
approximation. The simplest and most important of these expectations is \(\rho \) which can readily be written in terms of the previously introduced variables

\[
\rho(t) = \alpha_+(t) + \delta_+(t) + \eta_+(t) + z_1(t) + w_1(t).
\]

(62)

To proceed further we need to derive the explicit expression for \(w_1(t) \). There is a simple and elegant way to do this other than replacing the r.h.s. of the equation for \(\dot{w}_1 \) with known quantities and then integrating over \(t \). In fact, introducing \(\varepsilon \equiv z_1 + w_1 \) we have

\[
\varepsilon(t) = \varepsilon(t = 0) - \eta_+(t = 0) - 2\alpha_+(t = 0) - \eta_+(t) - 2\alpha_+(t)
\]

(64)

which leads to

\[
\rho(t) = \varepsilon(t = 0) - \eta_+(t = 0) - 2\alpha_+(t = 0) - f(t)
\]

(65a)

\[
= \rho_0^2 (3 - 2\rho_0) + \rho_0 (1 - \rho_0) (1 - 2\rho_0) e^{-t/4}
\]

(65b)

where we have used \(f = \alpha_+ - \delta_+ \) given in equation (50) and

\[
\varepsilon(t = 0) - \eta_+(t = 0) - 2\alpha_+(t = 0) = \rho_0^2 (3 - 2\rho_0) = \bar{\rho}(\rho_0).
\]

(66)

Most remarkably, equation (65b) is identical to its counterpart for the three-site approximation, equation (23), except for the argument of the exponential in which \(t/3 \) is replaced by \(t/4 \).

To derive the two-site expectation \(\phi = \langle \sigma_i \sigma_{i+1} \rangle \) we use the relation \(\phi = y_1 + z_2 + z_1 + w_1 = \alpha_+ + \varepsilon \) so that \(\phi \) can be immediately derived using the equations for \(\alpha_+ \) and \(\eta_+ \), equations (48) and (56). In this case, the form of the dependence of \(\phi \) on \(\rho_0 \) and \(t \) has no resemblance with the three-site approximation counterpart, but the asymptotic result is exactly the same. This can be seen by noting that \(\eta_+(t \to \infty) = 0 \) and so \(\phi = \bar{\rho}(\rho_0) - \alpha_+(t \to \infty) \) which is identical to equation (34) since \(\bar{y}(\rho_0) = \alpha_+(t \to \infty) \).

The calculation of the three-site expectation \(\psi = \langle \sigma_i \sigma_{i+1} \sigma_{i+2} \rangle \) is equally simple. We use the relation \(\psi = z_1 + w_1 = \varepsilon \). Hence \(\bar{\psi} = \bar{\rho}(\rho_0) - 2\alpha_+(t \to \infty) \) which is identical to equation (35).

The coincidence between the predictions of the three-site and four-site approximations for expectations involving three contiguous sites provides strong evidence that these expectations are exact results. However, this agreement fails when considering expectations involving four or more contiguous sites as we can appreciate by calculating \(w_1 = \langle \sigma_i \sigma_{i+1} \sigma_{i+2} \sigma_{i+3} \rangle \). We have \(w_1 = \varepsilon - z_1 = \varepsilon - \alpha_+(1 - \chi)/2 \). Using equation (60) for \(\chi \) and taking \(t \to \infty \) yields

\[
\bar{w}_1(\rho_0) = \bar{\rho}(\rho_0) + \bar{y}(\rho_0) [(1 - \rho_0)e^{-G(\rho_0)} - 3]
\]

(67)

where \(\bar{G}(\rho_0) = \int_0^\infty [\eta_+(t')/\alpha_+(t')] dt' \) and \(\bar{y}(\rho_0) \) is given by equation (30). As already pointed out, we have to resort to a numerical integration to evaluate \(\bar{G} \). Figure 3 shows the four expectations calculated in this section. In order to highlight the failure of the
three-site approximation to estimate four-site expectations we present in figure 4 the comparison between the four-site and three-site estimates of \tilde{w}_1. The tiny difference is imperceptible in the scale of figure 3 but it is sufficient to discard the possibility that the three-site approximation is the exact solution of the majority-vote model.

3.4.3. Probability of clusters of length m. The procedure here is identical to that applied for the three-site approximation, namely decompose $P_{m+2}(1-\sigma,\sigma,\ldots,\sigma,1-\sigma)$ with $\sigma = 0,1$ in terms of the elementary four-site probabilities. The new element is that clusters of length $m = 2$ can now be described directly by these elementary probabilities, $P_{\text{cl}}^{(4)}(\rho_0,2) = y_3 + y_4$ (see equation (43)) and yield

$$P_{\text{cl}}^{(4)}(\rho_0,2) = \bar{y}(\rho_0)[\rho_0 e^{-G(1-\rho_0)} + (1-\rho_0) e^{-G(\rho_0)}].$$

The probability of clusters of length $m > 2$ is given by

$$P_{\text{cl}}^{(4)}(\rho_0,m) = \left(\frac{\psi - \tilde{w}_1}{\psi}\right)^2 \left(\frac{w_1}{\psi}\right)^{m-3} + \left(\frac{\psi_{-1} - \tilde{w}_{-1}}{\psi_{-1}}\right)^2 \left(\frac{\tilde{w}_{-1}}{\psi_{-1}}\right)^{m-3}$$

where $\psi_{-1}(\rho_0) = \tilde{\psi}(1-\rho_0)$ and $\tilde{w}_{-1}(\rho_0) = \tilde{w}_1(1-\rho_0)$ with ψ and \tilde{w}_1 given by equations (35) and (67), respectively. These probability distributions are exhibited in figures 5 and 6. We find a perfect fitting of the simulation data for $m = 2$; for $m > 2$ the fitting is good but there are discrepancies in the vicinity of $\rho_0 = 0.5$, which are not perceptible in the scale of the figures.

3.4.4. Two-site correlations. Since the results of the four-site approximation reduce to those of the three-site for expectations involving up to three contiguous sites, correlations such as $\text{corr}(\sigma_i,\sigma_{i+1})$ and $\text{corr}(\sigma_i,\sigma_{i+2})$ are the same as for the three-site approximation. In addition, $\langle \sigma_i \sigma_{i+3}\rangle^{(4)} = \bar{w}_1 + y_3$ and so

$$\langle \sigma_i \sigma_{i+3}\rangle^{(4)} = \bar{\rho}(\rho_0) + \bar{y}(\rho_0) [(1-\rho_0)e^{-G(\rho_0)} + \rho_0 e^{-G(1-\rho_0)}] - 3.$$ \hspace{1cm} (70)

However, we need the decomposition in terms of the elementary four-site probabilities to calculate expectations involving more distant sites, such as

$$\langle \sigma_i \sigma_{i+4}\rangle^{(4)} = \frac{w_1^2}{\psi} + \left(\frac{\psi_{-1} - \tilde{w}_{-1}}{\tilde{w}_{-1}}\right)^2 + 2\rho_0 \bar{y}(\rho_0) e^{-G(1-\rho_0)}.$$ \hspace{1cm} (71)

These correlations are shown in figure 7. Following the already observed pattern, we find a perfect agreement with the simulation data for quantities whose calculation involves expectations of up to four contiguous sites.

4. Discussion

Although the main purpose of this contribution is to show the remarkably good predictions of the three- and four-site approximations in describing the steady-state properties of the extended one-dimensional majority-vote model, here we focus on the discussion of these properties rather than on the procedure to derive them.

Figure 5 presents the probability of an absorbing configuration exhibiting a cluster of length m as a function of the fraction of 1s in the random initial configuration. The

doi:10.1088/1742-5468/2012/07/P07003
three-site approximation does not provide a good quantitative account of the simulation data but it does provide an excellent qualitative picture which captures the change of P_{cl} from unimodal to bimodal that takes place for $m = 13$. The four-site approximation provides a very good qualitative representation of the simulation data. In fact, the fitting is perfect for $m = 2$ only, but the discrepancies are so small for $m > 2$ that they are barely visible on the scale of the figure. We note that the transition of the distribution $P_{cl}(\rho_0, m)$ from unimodal to bimodal was expected. In fact, long clusters should be abundant for initial configurations with ρ_0 close to 1 or 0 and very rare when the number of 1s and 0s is well balanced as for $\rho_0 = 0.5$. What is surprising is that the transition occurs for relatively large m, indicating, for example, that it is more likely to find clusters of length 10 by starting with a balanced initial configuration than with an unbalanced one. Our simulations indicate that the transition from unimodal to bimodal takes place at $m = 13$ already for $L > 17$. In addition, the distribution of cluster lengths is unimodal for $L \leq 9$ for all $2 \leq m \leq L - 2$.

Figure 6 shows the dependence of $P_{cl}(\rho_0, m)$ on m for fixed ρ_0. It is not possible to distinguish the results of the three- and four-site approximations and the simulation data for $\rho_0 = 0.2$ but some observable discrepancies appear between the three-site approximation and the data for large m in the case $\rho_0 = 0.5$. The distribution is given by the sum of two exponentials (see equations (38) and (69)) that account for the different possibilities of occurrence associated with clusters composed of 1s and 0s for $\rho_0 \neq 0.5$. For $\rho_0 = 0.5$ the arguments of the two exponentials become identical and so we have a single exponential decay. Clearly, for $\rho_0 = 0.2$ clusters composed of 1s are dominant for small m whereas clusters of 0s dominate in the large m regime. The slopes of the exponentials are complicated functions of ρ_0, which can be well approximated by equation (69) derived within the four-site approximation scheme. For comparison, figure 6
Mean-field analysis of the majority-vote model broken-ergodicity steady state

shows P_{cl} for randomly assembled configurations which is given by

$$
P_{cl}^{\text{random}}(\rho_0, m) = (1 - \rho_0)^2 \rho_0^m + \rho_0^2 (1 - \rho_0)^m.
$$

(72)

The failure of the four-site approximation in describing all the steady-state properties of the extended majority-vote model is better appreciated when we consider the two-site correlations, as shown in figure 7. As already pointed out, the correlations corr(σ_i, σ_i), corr(σ_i, σ_{i+1}) and corr(σ_i, σ_{i+2}) are described perfectly by both the three- and four-site approximations since they involve expectations of two and three contiguous sites only, so figure 7 exhibits the more challenging correlations, corr(σ_i, σ_{i+3}) (left panel) and corr(σ_i, σ_{i+4}) (right panel). The four-site approximation describes perfectly the former correlation but not the latter, whereas the three-site approximation fails in both cases. It is interesting that in all cases the two-site correlations exhibit a peak at $\rho_0 = 0.5$. This can be explained by noting that the dynamics takes longer to freeze into one of the absorbing configurations for well-balanced initial conditions which results in highly correlated sites. On the other hand, for ρ_0 close to its extreme values, most sites are already part of frozen random clusters formed during the assembly of the initial configuration and so most of the sites in the final configuration are uncorrelated.

Figure 7 shows, in addition, that the quality of the approximation improves with increasing n, as expected. For example, estimation of corr(σ_i, σ_{i+4}) using the three-site approximation (dashed curve) yields disastrous results, but the results obtained with the four-site approximation (solid curve) are reasonable. We note that as n increases the estimation of statistical measures involving $n+1$ sites is improved. In fact, the relative error resulting from use of the three-site approximation to estimate corr(σ_i, σ_{i+3}) at $\rho_0 = 0.5$ is 22.5% whereas the error due to use of the four-site approximation to estimate corr(σ_i, σ_{i+4}) is only 11.5%.

5. Conclusion

The extended one-dimensional majority-vote model is perhaps the simplest lattice model to exhibit an infinity of absorbing configurations. This strong ergodicity breaking is probably the reason why the model is not exactly solvable [27, 28]. From the mean-field theory perspective, which was the main focus of our paper, the nontrivial nature of the steady state of the model presented a most stimulating challenge as the usual fixed-point equations proved quite uninformative. In fact, the solution to the problem is a one-to-one mapping between the randomly assembled initial configurations, which are described statistically by the density of sites in state 1, ρ_0, and the absorbing configurations. That mapping was obtained directly in the case of the pair approximation but in the cases of the three- and four-site approximations we had to solve analytically the dynamics for arbitrary t and then take the asymptotic limit $t \to \infty$ in order to extract the mappings between the initial conditions and the steady state.

Although the pair approximation describes qualitatively the mapping between ρ_0 and the statistical properties of the steady state, its predictions regarding expectations involving two or more contiguous sites are not corroborated by the simulation results (see figure 2). The three-site approximation, however, produces a remarkably good fitting of the simulation data for all quantities involving the expectation of three contiguous sites. Moreover, the predictions of the four-site approximation reduce to those of the
three-site one in the case of three contiguous site expectations. We see this as a strong indication that the expectations $\langle \sigma_i \rangle$, $\langle \sigma_i \sigma_{i+2} \rangle$ and $\langle \sigma_i \sigma_{i+2} \sigma_{i+3} \rangle$ given by equations (24), (34) and (35) are exact results. In addition, the perfect fitting of the simulation data by the expectation $\langle \sigma_i \sigma_{i+2} \sigma_{i+3} \sigma_{i+4} \rangle$ calculated within the four-site approximation (see equation (67)) indicates that this quantity may be exact as well, but this evidence is not as strong as for the three-site expectations.

The findings summarized above as well as a purely numerical analysis of the five- and six-site approximations (data not shown) reveal a most remarkable pattern: an n-site approximation seems to yield the exact results for steady-state expectations involving n contiguous sites for $n > 2$. We hope that our paper will motivate further research to prove (or disprove) this assertion.

Acknowledgments

The work of JFF was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and PFCT was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

References

[18] Lambiotte R and Redner S, Dynamics of non-conservative voters, 2008 Europhys. Lett. 82 18007

doi:10.1088/1742-5468/2012/07/P07003
Mean-field analysis of the majority-vote model broken-ergodicity steady state

[26] Ince E L, 1956 Ordinary Differential Equations (New York: Dover)

doi:10.1088/1742-5468/2012/07/P07003