Endodermal cyst of the third cranial nerve

http://www.producao.usp.br/handle/BDPI/32594

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Case report

Endodermal cyst of the third cranial nerve

Ebalver G. Figueiredo a,∗, Hugo Sterman Neto a, Paulo E. Marchiori b, Sergio Rosemberg c, Manoel J. Teixeira a

a Division of Neurological Surgery, University of São Paulo, School of Medicine, São Paulo, Brazil
b Department of Neurology, University of São Paulo, School of Medicine, São Paulo, Brazil
c Department of Pathology, University of São Paulo, School of Medicine, São Paulo, Brazil

ARTICLE INFO

Article history:
Received 2 October 2010
Received in revised form 6 February 2012
Accepted 9 February 2012
Available online 6 March 2012

Keywords:
Endodermal cyst
Intracranial cyst
Magnetic resonance cisternography
Neurenteric cyst
Third cranial nerve

1. Introduction

Endodermal cysts are congenital lesions constituted by a mucus-secreting epithelium similar to that of the gastrointestinal tract/respiratory epithelium [1–3]. Intracranial endodermal cysts are rare [1–3] and, in these instances, they are found in the midline of the posterior fossa, anterior brainstem, and suprasellar region. Third cranial nerve cysts are an exquisitely rare occurrence with only four cases described so far [4–7]. The authors describe a case of a third cranial nerve endodermal cyst, discuss its clinical picture, radiological nuances and clinical outcome.

2. Case report

A 20 years old female complained of sudden headache, diplopia and left palpebral ptosis. Neurological examination revealed a left ptosis, anisocoria with a fixed dilated pupil and limitations in extraocular muscles movements. Only abduction of the left eye was preserved. No additional abnormalities were noticed. CT scan evidenced enlargement of left oculomotor cistern and compression of the uncus. Angiogram ruled out aneurysms. MRI revealed a cystic lesion associated with a thin rim of enhancement, occupying the left oculomotor and crural cisterns, with close proximity to the third cranial nerve as it exits from the midbrain (Fig. 1). The lesion exhibited an isointense signal area in the T1-weighted sequence and a markedly hyperintense signal in the T2-weighted sequence. It presented an enhanced rim with a gadolinium injection (Fig. 1).

At surgery, an intrinsic cystic lesion of the third cranial nerve was observed (Fig. 2a). After removal, an enlargement of the third cranial nerve due to the presence of solid adherent tissue was noticed and partially removed, remaining small parts adherent to the nerve and perforators arteries (Fig. 2b).

Pathological findings included columnar epithelial lining over loose smooth muscle cells and fibro-connective tissue (Fig. 3). Glandular structures resembling the gastrointestinal and respiratory epithelial cells were found. Immunohistochemical analysis showed that the epithelial cells reacted predominantly with CK-7, AML and S-100. Some cells in the submucosa were immunoreactive for S-100 protein and glial fibrillary acidic protein (GFAP). It was negative for CK20, CDX-2 and TTF-1. Endodermal cyst was the definitive diagnosis [1,3–7].

Postoperative period was uneventful and patient completely recovered third nerve function after 6 months.

3. Discussion

Endodermal cysts occur most often in the subdural space in the anterior spinal cord and usually at the lower cervical and upper thoracic levels [1–3]. They have also been called neurenteric and
enterogenous. Intracranial endodermal cysts are extremely rare, occurring on the ventral surface of the brainstem and exceptionally in the supratentorial compartment, mainly in the suprasellar region [1–5].

Third cranial nerve cysts have been reported in four studies [4–7]. Their pathoembriology still remains unknown and it is generally believed to result from failure of separation of neuroectodermal and endodermal elements in the first 3 weeks of embryogenesis [1–3].

Table 1 summarizes the cases of endodermal oculomotor cysts. Intracranial endodermal cysts present a male predominance (61%) and may occur at any age (birth – 77 years) [2]. Conversely, in the subset of endodermal cysts of the oculomotor nerve, young female preponderance has been observed (Table 1). Most cases of endodermal cysts usually have a long clinical course and become symptomatic due to cyst’s enlargement. Sudden headache and acute paresis of the oculomotor nerve was the main clinical presentation. Nonetheless, signs of chronic dysfunction of the third cranial nerve were noticed in two cases (Table 1). Headache is
believed to occur due to rapid cyst expansion. Several mechanisms have been proposed to explain the growth of cysts, including secretion from the epithelial cells of the cyst, intracystic hemorrhage, hormonal mechanisms, differences in osmotic pressure, and the one-way valve mechanism [2–5].

Because the clinical and radiological findings are not specific, preoperative diagnosis is difficult. Differential includes other cystic lesions, such as dermoid or epidermoid cyst, arachnoid cyst, cystic schwannoma, Rathke’s cleft cysts and neurocisticercosis. These lesions may present variable signal intensities on magnetic resonance imaging depending on the protein content. Most of them are usually slightly hypointense relative to cerebrospinal fluid on T1-weighted images and hyperintense on T2-weighted images. Overall, the characteristics of an endodermal cyst are that of a cystic lesion with a light enhanced rim and without nodular areas. Magnetic resonance cisternography was useful to confirm its location and features. Radiological findings of endodermal oculomotor nerve are detailed in Table 1.

Table 1
Summary of cases of endodermal cysts of the oculomotor nerve.

<table>
<thead>
<tr>
<th>Report</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Clinical presentation</th>
<th>MRI features</th>
<th>Extent of resection</th>
<th>Function of third cranial nerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan et al. [4]</td>
<td>30</td>
<td>Female</td>
<td>Chronic III nerve paresis</td>
<td>Cystic lesion with thin rim enhancement after Gadolinium injection</td>
<td>Subtotal</td>
<td>Improved</td>
</tr>
<tr>
<td>Okunagawa et al. [5]</td>
<td>16</td>
<td>Female</td>
<td>Headache, acute III nerve paresis</td>
<td>Cystic lesion with thin rim enhancement after Gadolinium injection</td>
<td>Subtotal</td>
<td>Improved</td>
</tr>
<tr>
<td>Karikari et al. [6]</td>
<td>02</td>
<td>Female</td>
<td>Acute III nerve paresis</td>
<td>Cystic lesion with thin rim enhancement after Gadolinium injection</td>
<td>Subtotal</td>
<td>Improved</td>
</tr>
<tr>
<td>Wait et al. [7]</td>
<td>05</td>
<td>Female</td>
<td>Chronic III nerve dysfunction, sudden headache and acute III nerve paresis</td>
<td>Cystic lesion with thin rim enhancement after Gadolinium injection</td>
<td>Subtotal</td>
<td>No improvement</td>
</tr>
<tr>
<td>Current case</td>
<td>20</td>
<td>Female</td>
<td>Chronic III nerve dysfunction, sudden headache and acute III nerve paresis</td>
<td>Cystic lesion with thin rim enhancement after Gadolinium injection</td>
<td>Subtotal</td>
<td>Improved</td>
</tr>
</tbody>
</table>

MRI: magnetic resonance image; CSF: cerebrospinal fluid.

removal is often impossible when portions densely adhere to the brainstem, major blood vessels, or cranial nerves, as demonstrated in this report. It is noteworthy to say that in the majority of cases, the oculomotor nerve function gradually improved.

Conflict of interest statement

The authors report no conflict of interest concerning the methods and findings specified in this paper.

References