First identification of canine distemper virus in hoary fox (Lycalopex vetulus): pathologic aspects and virus phylogeny

http://producao.usp.br/handle/BDPI/1871

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
First Identification of Canine Distemper Virus in Hoary Fox (Lycalopex vetulus): Pathologic Aspects and Virus Phylogeny

Jane Megid,1,4 Carlos Roberto Teixeira,1 Renee Laufer Amorin,1 Adriana Cortez,2 Marcos Bryan Heinemann,3 João Marcelo Azevedo de Paula Antunes,1 Luciana Fachini da Costa,1 Felipe Fornazari,1 Joseane Regina Bozzo Cipriano,1 Arita Cremasco,2 and Leonardo José Richtzenhain2

1 UNESP, School of Veterinary Medicine and Animal Sciences, Botucatu-SP, Brazil; 2 University of São Paulo, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, Av. Prof. Dr. Orlando Marques Paiva, 87, CEP 05508-000, São Paulo, SP, Brazil; 3 Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Universidade Federal de Minas Gerais, 931270-901 Belo Horizonte, MG, Brazil; 4 Corresponding author (email: jane@fmvz.unesp.br)

ABSTRACT: Canine distemper virus (CDV) has been reported in several wild animal species, but there have been no reports of CDV in hoary fox (Lycalopex vetulus). This paper characterizes the first case of natural CDV infection in hoary fox, including the clinical and pathologic aspects of the disease as well as the viral strain phylogeny.

Key words: Canine distemper virus, hoary fox, Lycalopex vetulus, phylogeny, RT-PCR.

Canine distemper virus (CDV) is an RNA virus belonging to the family Paramyxoviridae, genus Morbillivirus. The disease has a worldwide distribution and is considered one of the most important infectious diseases of domestic dogs (Canis familiaris). In many parts of the world, dogs are the likely maintenance hosts and sources of virulent pathogens for wildlife. Canine distemper originating from dogs has been reported in several wild animals (Bengston et al., 1991; Alexander and Appel, 1994; Mamaev et al., 1995; Roelke-Parker et al., 1996).

The objective of this study was to report a natural case of CDV infection in wild hoary fox (Lycalopex vetulus) and the virus strain phylogeny.

In April 2008, a wild hoary fox was found after being hit by a car on a road located in a rural area of Botucatu city (22°53’S, 48°26’W) in São Paulo State, Brazil. The animal was examined at the veterinary hospital and had severe dehydration, dyspnea, nasal and ocular discharge, tetraparesis, myoclonus, and diarrhea. Hematologic exam indicated lymphopenia and thrombocytopenia; intracytoplasmic viral-body inclusions were observed in blood smears.

The animal was euthanized and samples from brain and lung were collected for the detection of the CDV nucleocapsid protein RNA by reverse transcription–polymerase chain reaction (PCR). Total RNA was extracted with the Illustra RNAspin Mini RNA isolation kit (GE Healthcare, Little Chalfont, Buckinghamshire, UK), according to the manufacturer’s instruction. Reverse transcription–PCR was performed using the protocol described in Amaral (2007).

Amplified products with the expected molecular masses were purified using a commercial kit (Illustra GFX™ PCR DNA and Gel Band Purification Kit, GE Healthcare) and sequenced with both forward and reverse primers using the BigDye™ Terminator Kit (Applied Biosystems, Foster City, California, USA) on an automated sequencer (ABI model 377, Applied Biosystems), according to the manufacturer’s instructions. The complete sequence assemblies were created with the PHRED/PHRAP (Ewing and Green, 1998) and CAP3 (Huang and Madan, 1999) programs using nucleotide data with quality higher than 20. The derived CDV sequences were aligned using BIOEDIT version 7.0.5 (Hall, 1999).

Phylogenetic analysis was performed on the aligned dataset and a rooted tree was constructed using the distance-based neighbor-joining method in the Mega version 4.0 package (Tamura et al.,
The rinderpest viral sequence served as an out-group. Bootstrap values were calculated from 1,000 replicates using the heuristic method.

Accession numbers for sequences acquired from the public databases were as follows: Brazilian CDV strains isolated from dogs (AY738653, DQ005128, DQ005132, DQ005133, DQ005134), European CDV strain isolated from dogs (AF166268, AF166269), a North American CDV strain isolated from dog (EU716337), North American CDV strains isolated from raccoons (AY443350, AY466011, AY542312), vaccine CDV strain (AY684629 [Onderstepoort], EF418783 [Lederle]), and rinderpest virus (out-group: EF186058, EF186062).

Macroscopic results consisted of pneumonia and hemorrhage in the abdominal cavity near the kidneys as well as hepatic and splenic congestion. Histopathologic lesions were characterized by granulomatous meningoencephalomyelitis under the meninges. The main injuries present were multifocal spongiform lesions in the white matter of the cerebellum, which occurred with myelin loss, and degenerative lesions in the adjacent area of the fourth ventricle, which was characterized by gliosis. Vascular congestion in the lungs, extensive cytoplasmic vacuolation in liver, as well as glomerulonephritis and inclusion bodies in the urinary bladder epithelium were also observed. Canine distemper virus was detected by PCR in brain and lung samples from the hoary fox and it was phylogenetically similar to CDV from domestic dogs (Fig. 1).

In this report, clinical signs of CDV infection in Lycalopex vetulus were identical to those observed in domestic dogs affected by CDV, which demonstrates the susceptibility of this species to CDV and the similarity of this clinical disease to the CDV observed in domestic dogs (Greene and Appel, 2006). Histopathologic lesions are typically multifocal and more numerous than indicated by the clinical signs during neurologic examination. There was a predilection for infection of the cerebellar peduncles, rostral medullary velum, optic tract, hippocampal fomix, and spinal cord white matter, which is most likely a result of the proximity of these tracts. The main injury observed was a spongy white
matter in the cerebellum, myelin loss, and gliosis adjacent to the fourth ventricle. These lesions in the white matter are usually evident only in chronic cases when lymphocytic inflammation is extensive, which results in considerable demyelination and/or necrosis (Summers and Appel, 1994). The advanced stages of canine distemper in this animal may have contributed to it being hit by the car.

The phylogeny of the virus suggests that domestic dogs are a source of infection to the hoary fox, similarly to the observed recent cases of CDV in *Cerdocyon thous* in this region (Megid et al, 2009), in *Lycaon pictus* in Tanzania (Van de Bildt et al., 2002), in *Panthera leo* in the Serengeti (Roelke-Parker et al., 1996), and in several other wild animal species (McCarthy et al., 2007).

This is the first report of CDV in an individual of *Lycalopex vetulus* in Brazil and the relevance and impact of CDV infection to the local population of hoary fox could be significant.

LITERATURE CITED


Received for publication 11 June 2008.