Phlebotomine fauna (Diptera: Psychodidae) of an American cutaneous leishmaniasis endemic area in the state of Mato Grosso do Sul, Brazil
Phlebotomine fauna (Diptera: Psychodidae) of an American cutaneous leishmaniasis endemic area in the state of Mato Grosso do Sul, Brazil

Maria Elizabeth C Dorval1/+, Geucira Cristaldo1, Hilda Carlos da Rocha1, Tulia Peixoto Alves1, Murilo Andrade Alves1, Elisa Teruya Oshiro1, Alessandra Gutierrez de Oliveira1, Reginaldo Peçanha Brazil2, Eunice Aparecida Bianchi Galati3, Rivaldo Venâncio da Cunha4

1Departamento de Clínica Médica 2Departamento de Patologia, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande, MS, Brasil 3Laboratório de Bioquímica e Fisiologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil 4Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brasil

The occurrence of an outbreak of cutaneous leishmaniasis associated with *Leishmania (Leishmania) amazonensis* in the municipality of Bela Vista, state of Mato Grosso do Sul, Brazil, and the absence of information on its vectors in this area led the authors to undertake captures of phlebotomine sand flies, using Shannon traps and automatic CDC light traps, in domiciles, forested areas and animal shelters from February 2004-January 2006. A total of 808 specimens belonging to 18 sandfly species have been identified: *Bichromomyia flaviscutellata*, *Brumptomyia avellari*, *Brumptomyia brumpti*, *Brumptomyia sp*, *Evandromyia aldafalcaoae*, *Evandromyia cortelezzii*, *Evandromyia evandroi*, *Evandromyia lenti*, *Evandromyia teratodes*, *Evandromyia termoterala*, *Lutzomyia longipalpis*, *Nyssomyia whitmani*, *Pintomyia christenseni*, *Psathyromyia aragaoi*, *Psathyromyia campograndensis*, *Psathyromyia punctigeniculata*, *Psathyromyia shannoni* and *Sciopemyia sordellii*. The presence of *Lu. longipalpis*, *Ny. whitmani* and *Bi. flaviscutellata*, vectors of *Leishmania chagasi*, *Leishmania braziliensis* and *L. amazonensis*, respectively, has increased.

Key words: Phlebotominae - Psychodidae - leishmaniasis - Mato Grosso do Sul - vectors

The leishmaniases are currently regarded as a serious public health issue in affected areas, especially due to the rapid processes of expansion and urbanisation (Desjeux 2004). In Mato Grosso do Sul (MS), Brazil, visceral leishmaniasis (VL), which was reported for the first time by Migone in 1913, has spread quickly; it is currently reported as an endemic disease with notification in 49 municipalities, especially those on highway BR 262 (SSMS 2008). American cutaneous leishmaniasis (ACL), which affects 72 out of the 78 municipalities in MS, still occurs due to anthropic actions, afflicting primarily males at the productive age and farm labourers (Nunes et al. 1995, Nunes 2001).

The recent identification of *Leishmania (Leishmania) amazonensis* as an etiological agent of an ACL outbreak affecting individuals in a military training unit in the municipality of Bela Vista (Dorval et al. 2006) led the authors to investigate the phlebotomine fauna in that area, with the report of this investigation being the object of the present paper.

MATERIALS AND METHODS

Study area - The municipality of Bela Vista (22°06' 32.565'S 56°31'16.016''W, 180 m asl) is located in the southwestern region of MS, in the geographical micro-region of Bodoquena. It has an area of 5,315 km² and its borders are: the municipality of Jardim northwards, the Republic of Paraguay southwards, the municipality of Antônio João eastwards, and the municipality of Caracol westwards. Bela Vista is located on the right bank of the River Apa, opposite the Bella Vista district in Paraguay, 349 km from the state capital, Campo Grande (SMS 2001).

Of the original vegetation that covered the region, savannah-like formations, seasonal forests and savannah predominate and only a few seasonal semideciduous forest-like formations were preserved. Currently, 80% of the total area is occupied by agriculture (temporary crop husbandry) and cattle raising activities (native and cultivated pastures) (IBGE 2002).

Local characteristics - The 10º Regimento de Cavalaria Mecanizado (10º RCMec), located in the municipality of Bela Vista, has an area with heterogeneous vegetation represented by areas of campo sujo, forested savannah (cerradão), gallery forest and marsh, all of them significantly marked by human presence.

Some places situated close to the Candelão stream are floodable areas with unusual gallery forest-like vegetation, where pioneer and secondary species are predominant, distorting the surroundings of the remaining...
RESULTS

The sandfly fauna captured belonged to eight genera and 18 species: Bichromomyia flaviscutellata, Brumptomyia avellari, Brumptomyia brumpti, Brumptomyia sp, Evandro myia aldafalcaoae, Evandro myia cortelezzi, Evandro myia evandroi, Evandro myia lenti, Evandro myia teratodes, Evandro myia termitophila, Lu zomyia longipalpis, Nyssomyia whitmani, Pintomyia christensi ni, Psathyromyia aragoai, Psathyromyia campogradensi s, Psathyromyia punctigeniculata, Psathyromyia shannoni and Scio pemyia sordelli.

In all the environments sampled, 354 phlebotomine sand flies were caught using automatic light traps. There were 194 males (54.80%) and 160 (45.20%) females and the male/female ratio for all species was 1.2:1.0. The total number of insects caught according to the environment, trap level, sex and the respective diversity and evenness indices in each sampled site are shown in Table I. The SISA is shown in Table II.

Considering all the environments studied and the overall number of sandflies caught, the predominant species were Br. brumpti (31.36%) and Lu. longipalpis (29.94%), followed by Ev. lenti (13.28%) and Br. avellari (11.86%).

The index of diversity in the forested area was higher (1.2-1.8) than in the animal shelters (0.1-1.4), thus yielding a higher number of species, but presenting, for the most part, low frequencies. The lowest diversity index was observed in horse stalls, with only two species captured.

The SISA showed that the most abundant species, present in all environments, was Ev. lenti (SISA = 0.792), followed by Br. brumpti (SISA = 0.694) and Br. avellari (SISA = 0.625), with SISA values closer to 1.0, indicating maximum abundance and occupation of a larger number of ecotopes.

The most abundant species in the forested area were Br. brumpti (SISA = 1.00), Br. avellari (SISA = 0.856) and Ev. lenti (SISA = 0.689), with the first showing maximum abundance, whereas in the animal shelters the most frequent species were Ev. lenti (SISA = 0.933) and Lu. longipalpis (SISA = 0.867) (Table II).

For intradomiciliar captures, six males and seven females of Lu. longipalpis were caught in the military house and in the house in the centre of town; the species found were Ev. aldafalcaoae (one male and one female) and Lu. longipalpis (26 males and 9 females).

With Shannon traps, in addition to fauna similar to that obtained with automatic light traps, Ev. cortelezzi and Ev. teratodes were also caught. The 454 specimens captured monthly with this kind of trap belonged to the 14 species presented in Table II; there were 206 males (45.37%) and 248 (54.63%) females, with a female/male ratio of 1.2:1.0. No specimens of sandflies were caught in the black traps.

Williams’s geometric average, which indicates both the quantity and frequency of insects caught in the traps, was calculated for the total number of male and female specimens captured monthly in Shannon traps (Fig. I). The highest means were found in July, August and September, coinciding with the least rainy season. Fig. 2 shows the accumulated rainfall, the average monthly
TABLE I

Phlebotomines of both sexes captured fortnightly in light traps in the areas belonging to the 10º Regimento de Cavalaria Mecanizado, municipality of Bela Vista, Mato Grosso do Sul, from February 2004-January 2006 and respective indices of diversity and regularity

<table>
<thead>
<tr>
<th>Site species</th>
<th>Rope site</th>
<th>First aid site</th>
<th>First division headquarters</th>
<th>Camping area 1</th>
<th>Camping area 2</th>
<th>Hen house</th>
<th>Pigsty</th>
<th>Horse stall</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>canopy</td>
<td>tree</td>
<td>ground</td>
<td>canopy</td>
<td>ground</td>
<td>canopy</td>
<td>ground</td>
<td>canopy</td>
</tr>
<tr>
<td></td>
<td>number of captures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bichromomyia flaviscutellata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brumptomyia avellari</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Brumptomyia brunpti</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Brumptomyia sp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Evandromyia evandroi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Evandromyia lenti</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Evandromyia termitiphila</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lutzomyia longipalpis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nyssomyia whitmani</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pintomyia christensi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Psathyromyia aragaoi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Psathyromyia campograndensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psathyromyia punctigeniculata</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psathyromyia shannoni</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Sciopemyia sordelli</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>8</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Indice of diversity</td>
<td>1.50</td>
<td>1.80</td>
<td>1.70</td>
<td>1.20</td>
<td>1.40</td>
<td>1.40</td>
<td>1.40</td>
<td>0.10</td>
<td>1.79</td>
</tr>
<tr>
<td>Indice of regularity</td>
<td>0.80</td>
<td>0.80</td>
<td>0.70</td>
<td>0.70</td>
<td>0.60</td>
<td>1.30</td>
<td>0.80</td>
<td>0.10</td>
<td>0.66</td>
</tr>
</tbody>
</table>
temperature and the total number of insects of both sexes caught over two years.

In this kind of trap, species *Ps. shannoni* (34.58%), *Ps. punctigeniculata* (21.59%) and *Ev. lenti* (14.32%) accounted for 70.49% of the specimens caught, followed by *Br. brumpti* (8.81%), *Bi. flaviscutellata* (5.95%), *Lu. longipalpis* (4.41%) and *Br. avellari* (5.95%). Among the females, *Ps. punctigeniculata* (33.9%) predominated, followed by *Ps. shannoni* (17.3%).

Fig. 3 shows the average number of specimens caught per hour for each species and the predominant species caught over the first three hours of capture. The catches made after midnight were not included in the analysis and graphs because the number of captures after this hour was not significant; only six specimens were caught, including *Ps. shannoni* (3 specimens), *Br. brumpti* (2 specimens) and *Ps. punctigeniculata* (1 specimen). Fig. 4 shows the hourly averages for the most abundant and most frequent species, *Ps. shannoni* and *Ps. punctigeniculata*.

Except for *S. sordellii*, which in the present study was found to be infected by a large number of flagellates with no specific identification thus far, all other females dissected were negative for flagellates based on inspection by optical microscopy.

DISCUSSION

The presence of 18 phlebotomine species in the studied area, even at low frequencies, shows a diversified fauna as previously reported in the state (Galati et al. 1996, 1997, 2003a, b, 2006, Oliveira et al. 2003). These findings highlight the research performed by Galati.
TABLE III
Number of phlebotomines according to sex, captured monthly in Shannon traps in the 10º Regimento de Cavalaria Mecanizado, municipality of Bela Vista, Mato Grosso do Sul, from February 2004-January 2006.

<table>
<thead>
<tr>
<th>Months</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Total</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td></td>
</tr>
<tr>
<td>Bichromomyia flaviscutellata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brumptomyia avellari</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Brumptomyia brumpti</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Brumptomyia sp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Evandromyia cortezezii</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Evandromyia lenti</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Evandromyia teratodes</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Evandromyia termidophila</td>
<td>-</td>
</tr>
<tr>
<td>Lutzomyia longipalpis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nyssomyia whitmani</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Psathyromyia campograndensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psathyromyia punctigeniculata</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>11</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Psathyromyia shannoni</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>23</td>
<td>8</td>
<td>35</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Sciopemyia sordellii</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>16</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>16</td>
<td>37</td>
<td>40</td>
<td>39</td>
<td>50</td>
<td>48</td>
<td>34</td>
<td>31</td>
</tr>
</tbody>
</table>
findings of Galati et al. (2001) in the Serra da Bodoque -

black traps in the area, which is not compliant with the

southwestern region Bela Vista is located.

ranged from 18.2-25°C. Thus, the pattern of species
curred during the driest season, when temperature
caught throughout the year, but the highest density oc-

rest concentration of specimens occurred between 6-9

pm. Thus, the exposure of people visiting the area of

study should be reduced during this period, when the

risk of leishmaniasis transmission is highest.

As for the phlebotomines’ nocturnal habits, the high-
est concentration of specimens occurred between 6-9

pm. Thus, the exposure of people visiting the area of

study should be reduced during this period, when the

risk of leishmaniasis transmission is highest.

On the whole, the sandflies of the study area were
caught throughout the year, but the highest density oc-
curred during the driest season, when temperature
ranged from 18.2-25°C. Thus, the pattern of species
abundance over the two years of study seems to point
out that the driest season is the most favourable to the
adult activity of most species.

Brumptomyia species are broadly distributed in
America (Martins et al. 1978) and constitute the group of sandflies commonly associated with armadillo bur-
rows. They were not abundant in the caves and forested
areas of the Serra da Bodoquena studied by Galati et al.
(2003a, 2006), nor in a cave situated in the Pantanal re-

region (Galati et al. 1997). In the present study though, they
were present with high frequency (48.3%) in the light
traps installed in the woods. In Shannon traps, 15.4%
of specimens captured were Brumptomyia, which suggests
that, unlike the environments sampled by the previously
mentioned researchers, this forest soil is favourable to
the development of these sandflies and that these insects
are also highly attracted to light. It is noteworthy that the
efficiency of the Shannon traps is influenced by human
attraction and also by light.

Ev. lenti was the most abundant species in the area,
present in several environments studied and was shown
to be highly attracted to Shannon traps. It has already
been reported in pigsties, perches and savannah areas
in MS (Galati et al. 1996) and is also one of the most
frequently found species in the urban peridomiciles of
the capital, Campo Grande (Oliveira et al. 2003), and in

many other towns in the state of Goiás, where a signifi-
cant association of this species with cases of ACL was
observed (Martins et al. 2002).

As noted by Galati et al. (2003b), Lu. longipalpis, a
species of recognised importance in VL transmission in
Latin America, showed poor attraction to Shannon traps.
It was present though, accounting for 29.9% of the speci-

mens collected with CDC traps and frequently found in
horse stalls located on the premises of the 10º RCMec.

Such a result is compliant with the literature data,
which report a high frequency of this sandfly in an-
thropic environments and in animal shelters (Azevedo et al. 2000). According to Ximenes et al. (1999), among
all the specimens collected in horses, 95% were Lu. longipalpis. In the Serra da Bodoquena, Galati et al.
(2003b), using different animal baits, pointed to pigsties
as an important factor of attraction or breeding for this
phlebotomine, as it showed greater attraction to pigs
than to horses or hens.

Lu. longipalpis was also found in domiciles in town.
This fact is a matter of concern for the public health staff
because of the insects’ great vector ability, its potential
for adaptation and dispersion and the confirmation of VL in human (SSMS 2006) and canine (unpublished ob-

servation) populations in the municipality of Bela Vista.
It is important to note the recent findings of Savani et al.
(2005) at Assentamento Guaicurus, located on the west-
ern slope of the central part of the Serra da Bodoquena,
in which polymerase chain reaction (PCR) showed Lu.
longipalpis females infected with L. amazonensis.

In addition, the presence and breeding of animals
in the peridomicile along with poor hygienic conditions
may be a factor in the aggregation of Lu. longipalpis
as well as of other phlebotomine species, increasing
the risk of Leishmania transmission (Forattini 1953,
Ximenes et al. 1999).

Though non-significant, the presence of Ny. whit-
mani, one of the most important vectors of ACL in the
Northeastern, Southeastern, Southern and Mid-Western
Regions of Brazil and in Paraguay (Rangel et al. 1990,
Hashigushi et al. 1992, Queiroz et al. 1994, Galati et al.
1996, Dias-Lima et al. 2003, Leonardo & Rebelo 2004) should be noteworthy. However, the identification of *L. bразилиensis* in the cutaneous lesion material of patients from Bela Vista indicates that, even at low densities, this species may present a risk of parasite transmission.

Ps. punctigeniculata, already reported in other areas of MS (Galati et al. 1996, 2006), was practically absent in CDC traps. Nevertheless, its frequency was higher among the females caught with Shannon traps, which reinforces its epidemiological potential as a possible vector of infectious agents to man. Its presence in the white trap only is not in accord with the observations of Galati et al. (2001) in the Serra da Bodoquena, where this species was significantly more attracted to the black trap.

Ps. shannoni was the species most attracted to Shannon traps when considering both sexes and came second among the females. It was found in every month of the study, demonstrating its epidemiological importance as already observed by Galati et al. (1996) in a focus of ACL in the municipality of Corquinho, MS, where it was the second most abundant species in this kind of trap. It was also collected in large numbers when the black trap was used in the Serra da Bodoquena (Galati et al. 2001) and was one of the most prevalent species in this kind of capture in a study performed at Chapada dos Guimarães, Mato Grosso (Biancardi & Castellón 2000).

This species is widely spread throughout the American continent and, although it is not associated with leishmaniasis transmission, it has been caught in anthropic environments and in captures with human bait (Hashguchi et al. 1992, Galati et al. 2003b, Balbino et al. 2005). Moreover, it has been regarded as an important transmitter of arbovirus and *Endotrypanum schaudinnii* (Mesnil & Brimont 1908), a trypanosomatid found only in sloths (Comer et al. 1990, Franco & Grimaldi 1999). Isoenzyme analysis showed that this species is parasitised by indistinguishable *Leishmania* flagellates of human origin (Rowton et al. 1991). More recently, Travi et al. (2002) tentatively demonstrated the infection of this species through *Leishmania infantum*-infected dogs, thus suggesting its participation in the spread of the parasite.

The low attraction to man of *Bi. flaviscutellata*, a proven vector of *L. amazonensis* in other areas, has been reported in other regions (Lainson 1985, Balbino et al. 2005). The rodentophilic habits of this species were made evident by the captures obtained with Disney traps (Dorval et al. 2007) and in this study the scarcity of specimens caught in Shannon traps (5.95%) indirectly showed the species’ poor attraction to human bait. This fact could explain the non-occurrence of the disease among the people who visit the area.

The presence of this species in other areas in MS (Oliveira et al. 2003, Galati et al. 2006, Nunes et al. 2008), in spite of the lower number of specimens caught, is epidemiologically relevant, as *L. amazonensis* has already been reported as an etiological agent of human cases of ACL in the studied area (Dorval et al. 2006). In this context, this species is likely to be involved in the transmission of the disease not only in the study area but also in other areas where it occurs within MS.

Therefore, knowledge about MS’s phlebotomine fauna is increasing. Considering the species *Lu. longipalpis*, *Ny. whitmani* and *Bi. flaviscutellata*, the potential for leishmaniasis transmission and also the fact that the town borders Paraguay and that the movement of people and animals is continuous, the national health surveillance system has to be warned to keep permanent and strict control over the region so as to minimise the spread of these diseases in the state and in the neighbouring country.

ACKNOWLEDGEMENTS

To the Command and the military of the 10º RCMec and to the research team, for the unconditional support to the study, to the Coordenadoria de Controle de Vetores da Secretaria de Estado de Saúde, especially Elias Monteiro, for logistic support, to João Anastácio, for the collaboration in field work, to Militaries André Flávio Maria Zimmermann and Claudemar Borges Dias, for the usual reception and tireless collaboration in the captures.

REFERENCES

